ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES IN THE STATE OF NEW YORK PHASE I INVESTIGATIONS

NYSDOT SPILL NO. 811902.

VILLAGE OF PAWLING, DUTCHESS COUNTY, NEW YORK

SITE CODE: 314060

Prepared for

DIVISION OF SOLID AND HAZARDOUS WASTE

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

50 WOLF ROAD

ALBANY, NEW YORK 12233-0001

Prepared by

WEHRAN ENGINEERING, P.C. 666 EAST MAIN STREET MIDDLETOWN, NEW YORK 10940

WE Project No. 06281

February 1987

1.0 EXECUTIVE SUMMARY

1.0 EXECUTIVE SUMMARY

The NYSDOT Spill No. 811902 site (New York Site Code 314060) is located along Route 22 in the Village of Pawling, Dutchess County, New York (Figure 1). The site consists of five parcels, approximately 20 acres in size. Groundwater in the vicinity of the site has been contaminated with petroleum hydrocarbons since the spring of 1982. Analytical data from samples taken at five private residences located in the vicinity indicate the presence of gasoline in each of the wells.

Subsequent hydrogeologic investigations by Empire Soils Investigations, Inc. and Thomson Associates identify the Amoco Station located along Route 22 in the Village of Pawling to be the major source of hydrocarbon contamination.

The preliminary Hazard Ranking System (HRS) scores for the NYSDOT Spill No. 811902 site are as follows: Migration Score (S_{M}) = 38.17; Direct Contact Score (S_{DC}) = 12.50; Fire and Explosion (S_{FE}) = 0. The migration score is attributable to a direct observed release to groundwater.

A Phase II work plan has not been suggested at the NYSDOT Spill No. 811902 site. The site is recommended for consideration by the NYSDEC Bureau of Remedial Action.

HRS WORKSHEETS

Facility Name:

NYSDOT Spill No. 811902

Location:

Route 22, Pawling, New York

EPA Region:

II

Person(s) in Charge of the Facility:

Name of Reviewer: Stephen R. Petrisko

Date:

November 4, 1986

General Description of the Facility:

(For example: landfill, surface impoundment, pile, container; types of hazardous substances; location of the facility; contamination route of major concern; types of information needed for rating; agency action, etc.)

Gasoline contaminated water supply wells located in a commercial area along Route 22 in Pawling, New York. Chemicals present in wells include benzene, toluene, m-xylene, o-xylene, ethyl benzene, tetrachloroethylene, and dichlorobenzene.

Scores:
$$S_{M} = 38.17$$
 $(S_{gw} = 65.62 S_{sw} = 7.44 S_{a} = 0)$

$$S_{FE} = 0$$

$$S_{DC} = 12.50$$

	GROUND WATER ROUTE WORK SHEET								
	Rating Factor	Assigned Value (Circle One)	Multi- plier		Max. Score	Ref. (Section			
	Observed Release	0 45	1	45	45	. 3.1			
	If observed release is	s given a score of 45, proceed to line 4. s given a score of 0, proceed to line 2.				<u></u>			
2	Route Characteristics Depth to Aquifer of Concern	0 1 2 3	2		6	3.2			
	Net Precipitation Permeability of the Unsaturated Zone	0 1 2 3 0 1 2 3	1		3 3				
	Physical State	0. 1 2 3	1		3				
ন		Total Route Characteristics Score			15				
<u> </u>	Containment	0 1 2 3	1		3	3.3			
4	Waste Characteristics Toxicity/Persistence Hazardous Waste Quantity	0 3 6 9 12 15 (8) 0 (1) 2 3 4 5 6 7 8	1	18 1	18	3.4			
		Total Waste Characteristics Score		19	26				
	Targets Ground Water Use Distance to Nearest Well/Population Served	0 1 2 3 0 4 8 8 10 12 16 18 20 24 30 32 35 40	3 1	a 35	9 40	3.5			
ন্ত্র		Total Targets Score		44	49	·			
	If tine 1 is 45, multiplif tine 1 is 0, multip			7,620	57.330				
7	Divide line 📵 by 57,	330 and multiply by 100 Saw = 65.62	2						

-

		SURFACE	WATER ROUTE	WORK S	HEET		
	Rating Factor		Assigned Value (Circle One)	Muit		e Max. Score	Ref.
1	Observed Release		0 45	. 1	0	45	4.1
	If observed releas	e is given a valu e is given a valu	e of 45, proceed to line of 0, proceed to line	1e 4.	•		1
2	Route Characteris	lics					4.2
	Facility Slope and		0 1 2 (3)	. 1	3	3	4.2
	1-yr. 24-hr. Raintal		0 1 (2) 3	1	2	3	
	Distance to Neare Water	st Surface	0 1 2 3	2	6	. 6	
	Physical State		0 1 2 3	1	3	3	
		Total R	oute Characteristics S	core	14	15	
3	Containment		0 1 2 3	1	3	3	4.3
	Waste Characterist Toxicity/Persistend Hazardous Waste Quantity	:0	0 3 6 9 12 15 (18) 0 (1) 2 3 4 5 6	7 8 1	18 1	18	4.4
		Total Wa	aste Characteristics So	core	19	26	
	Targets Surface Water Use	_					4.5
	Distance to a Sensi	tive (1 2 3	3 2	6 0	9 6	
1	Population Served/ to Water Intake Downstream		4 6 8 10 16 18 20 30 32 35 40	. 1	n	40	
,	·	. To	otal Targets Score		6	55	
-		uitiply 1 x 4		•	4,788	64,350	

•

•

			,						•
		A	IR ROU	TE WOR	RK SHEE	7			
	Rating Factor Assigned Value Multi- (Circle One) Piler S							Score Max. Score	Ref. (Section
1	Observed Release	-	0	45		1	0	45	5.1
	Date and Location:				-			. <u> </u>	
	Sampling Protocol:						···		
	If line 1 is 0, th		_						
2	Waste Characterist Reactivity and Incompatibility	tics	0 1	2]		1		3	5.2
	Toxicity Hazardous Waste Quantity		0 1	2 3 2 3 4	5 6 7 8	3		9 8	
							٠		
		To	otal Waste (Characteris	tics Score			20	
3]	Targets Population Within) 0 9	12 15 18		1		30	5.3
	4-Mile Radius Distance to Sensit	ive '	21 24			2		6	
	Environment Land Use		0 1	2 3		1		3	
			Total '	Targets Sc	220			39	
	·		: 4141	Aero Ge			<u> </u>		
4	Multiply 1 x	2 x 3						35,100	
	Divide line 4 b	•			3 a = 0				

•

	s	s ²
Groundwater Route Score (Sgw)	65.62	4,305.98
Surface Water Route Score (S _{SW})	7.44	55,35
Air Route Score (Sa)	n	0
$s_{gw}^2 + s_{sw}^2 + s_a^2$		4,361.33
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		6 6. 04
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73$		S _M = 38.17

WORKSHEET FOR COMPUTING SM

Rating Factor		A89 (C	ign	ed	Val One	ue)		Multi- plier	Score	Max. Score	Ref.
Containment	•	1				3		1 .		3	7.1
2 Waste Characteristics					-		-				
Direct Evidence	0)		3	ľ			1		3	7.2
Ignitability				_				1		3	
Reactivity	0		2					1		3	
Incompatibility Hazardous Waste Guantity	0	1 1	2	3	4	5	6 7 8	3 1 •	•	3	
	•							-			
·	Total Wa	ste	Chi	irac	ter	stic	s Score			20	·
Targets								<u>-</u>			7.3
Distance to Nearest Population	0	1	2	3	4	5		1		5	7.3
Distance to Nearest	•		_	_						•	
Building	0	1	2	3				1		3	
Distance to Sensitive	G	. 1	2	3				1			
Environment				_			•	•		3	
Land Use Population Within	0	1	2	3				1		3	
2-Mile Radius	0	1	Z	3	4	5		1		5	
Buildings Within	0	1	2	3	4	5		1		_	
2-Mile Radius		·	•			•		•		5	
	Tot	al T	arg	ets	Sca	ore		- 		24	
Multiply 1 x 2 x 3									1	,440	


	DIRECT CONTACT WORK SHEET							
	Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Ref. (Section)		
1	Observed Incident	0 45	1	0	45	8.1		
	If line 1 is 45, proceed to 11 line 1 is 0, proceed to		•					
2	Accessibility	0 1 2 3	1	3	3	8.2		
3	Containment	0 (15)	1	15	15	8.3		
•	Waste Characteristics Toxicity	0 1 2 3	5	10	15	8.4		
3	Targets Population Within a 1-Mile Radius Distance to a Critical Habitat	0 1 2 3 4 5	4	8	20	8.5		
		Total Targets Score	. [32	•		
<u>6</u>	If line 1 is 45, multiply If line 1 is 0, multiply	1 × 4 × 5	2	8 2,700	21.600			
	Divide line 6 by 21,800 a	and multiply by 100 Soc = 1	10.50			•		

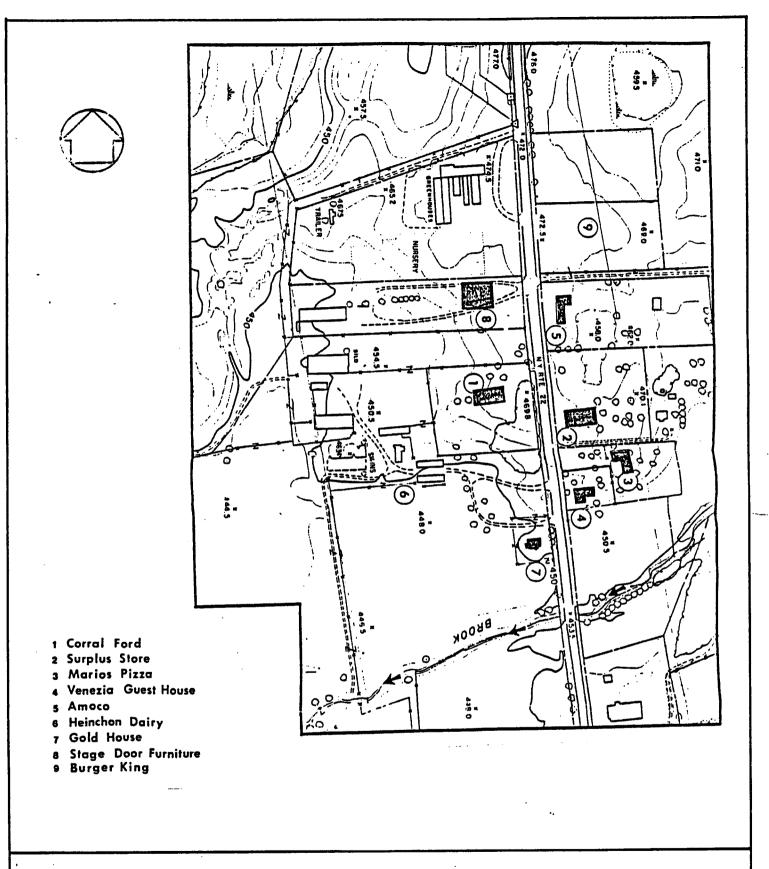
TABLE OF CONTENTS

NYSDOT SPILL NO. 811902

		Page <u>Number</u>
1.0	EXECUTIVE SUMMARY	1-1
2.0	PURPOSE	2-1
3.0	SCOPE OF WORK	3-1
4.0	SITE ASSESSMENT	4-1
	 4.1 Site History 4.2 Site Topography 4.3 Site Hydrogeology 4.4 Site Contamination 	4-1 4-1 4-2 4-3
5.0	PRELIMINARY APPLICATION OF THE HAZARD RANKING SYSTEM	5-1
	5.1 Narrative Summary	5-1
6.0	ASSESSMENT OF DATA ADEQUACY AND RECOMMENDATIONS	6-1
	 6.1 Groundwater Route 6.2 Surface Water Route 6.3 Air Route 6.4 Fire and Explosion 6.5 Direct Contact 6.6 Recommendations 	6-1 6-1 6-1 6-1 6-1 6-2

APPENDIX

SCALE: 1" - 2000' TOPOGRAPHY TAKEN FROM PAWLING, NEW YORK - CONN. U.S.G.S. QUADRANGLE 1958 PHOTOREVISED 1971 AMS 6267 II SE - SERIES 821


7.5 MIN. SERIES

QUADRANGLE LOCATION

FIGURE 1 ·

N.Y.S.D.O.T. SPILL NO. 811902 PAWLING, NEW YORK

LAT. 41-32'-08'N LONG. 73-35'-08'W

SCALE: 1" - 200'

BASE MAP PROVIDED BY N.Y.S.D.O.T.
OIL SPILL ENGINEER.

DATE: 8/83

QUADRANGLE LOCATION

FIGURE 2
SITE SKETCH
N.Y.S.D.O.T. SPILL
NO. 811902
PAWLING, NEW YORK
N.T.S.

2.0 PURPOSE

2.0 PURPOSE

This Phase I investigation was conducted under contract to the New York State Department of Environmental Conservation Superfund Program to evaluate the potential environmental or public health hazard associated with past disposal activities at the NYSDOT Spill No. 811092 site. Divided into two parts, this initial investigation consisted of a detailed file review of available information and an initial site investigation. The culmination of this phase is the development of a preliminary Hazard Ranking System (HRS) score.

Where information is lacking and a final score cannot be computed, recommendations will be made for a Phase II investigation designed to verify the assumptions made in the preliminary scoring and to collect the additional data needed to complete the site assessment.

3.0 SCOPE OF WORK

3.0 SCOPE OF WORK

To complete the preliminary HRS score for the NYSDOT Spill No. 811902 site, the following scope of work was conducted:

. A search of the following:

- Available file information from federal, state, and municipal agencies
- Published documents and maps from the U.S. Geological Survey, Soil Conservation Service and state agencies for geological, hydrological and topographical data
- Available files, reports and drawings provided by site owners, operators and other knowledgeable parties.
- . Interviews with individuals having knowledge of the site

Information searched includes well logs, land use data, water usage patterns, critical habitats and endangered species data, meteorological data, hydrological, geological and topographical data, waste characteristics and demographic information.

Following the initial record search, a site inspection was conducted. The intent of the inspection is to verify existing file information and to conduct an HNU survey to screen for potential air releases. Items of specific interest in the site investigation include:

- Overall site environmental conditions
- The presence of disturbed areas
- Visual signs of waste materials (drums, sludges, etc.)
- . The occurrence of leachate
- Site topography

A detailed analysis was performed on all data collected in preparation of a preliminary HRS score. Where information was lacking and a final HRS score could not be computed, recommendations were made for a Phase II investigation. This investigation was designed to verify the assumptions made in the preliminary scoring and to collect the additional data needed to complete the site assessment. A summary of agencies contacted, contact person, address and information obtained follows.

SOURCES -- NYSDOT SPILL NO. 811902 SFTE (Page 1)

1			
Name/Address/Phone	Type of Contact	Date	Information Provided
Mr. John Czapor, Environmental Engineer USEPA, Region II 26 Federal Plaza New York, New York 10278 (212) 264-1573	Letter Office Visit	1/3/86 1/14/86 1/24/86	USEPA file information
Mr. Richard D. Spear, Chief Surveillance & Monitoring Branch USEPA, Region II Woodbridge Avenue Edison, New Jersey 08817 (201) 321-6685	Letter ·	1/3/86	None available
Mr. Lawrence A. Martens, District Chief U.S. Department of the Interior U.S. Geological Survey Albany District Office P.O. Box 1669 U.S. Post Office and Court House Albany, New York 12201 (518) 472-3107	Letter Telephone Call	1/3/86	Roger Waller responded - list of available county groundwater reports
Mr. Paul Dodd, State Conservationist U.S. Department of Agriculture Soil Conservation Service 771 James M. Hanley Federal Building 100 South Clinton Street Syracuse, New York 13260 (315) 423-5521	Letter Telephone Call	1/3/86 1/13/86	Fred Gilbert responded - list of available county soil surveys
Mr. Carl B. Sciple, Division Engineer Army Corps of Engineers New England Division 424 Trapelo Road Waltham, Massachusetts 02154 (617) 894-2400	Letter	1/3/86	None available
Mr. Frederick J. Scullin, Jr. U.S. Department of Justice U.S. Attorney, Northern District of New York 369 Federal Building 100 South Clinton Street Syracuse, New York 13260 (315) 423-5165	Letter	1/3/86	Craig Benedict responded - No information available

SOURCES -- NYSDOT SPILL NO. 811902 SITE (Page 2)

	Type of		
Name/Address/Phone	Contact	<u>Date</u>	Information Provided
Mr. Conrad Simon, Director Air and Waste Management Division United States Environmental Protection Agency Region 2 26 Federal Plaza New York, New York 10278	Letter	1/24/86	None available
Mr. Marsden Chen, Supervisor Division of Solid and Hazardous Waste New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233 (518) 457-0639	Office Visit	12/4/85	NYSDEC file information
Mr. Ronald Tramontano, P.E. Chief, Surveillance and Investigation Division Bureau of Toxic Substance Assessment Surveillance and Investigation Section Empire State Plaza Corning Tower, Room 372 Albany, New York 12237	Letter Office Visit	1/3/86 1/9/86	File information
Robert H. Fakundiny, State Geologist Geological Survey of New York State State Education Department Division of Museum Services Albany, New York 12230 (518) 474-5816	Letter	1/3/86	County Groundwater Reports
Mr. Robert Abrams, Attorney General New York State Attorney General Department of Law State Capitol, Room 221 Albany, New York 12224 (581) 474-7330	Letter	1/3/86	No information
Mr. Geoff Bornemann, Principal Planner Capital District Regional Planning Commission 251 River Street, Monument Square Troy, New York 12180 (518) 272-1414	Letter	1/3/86	Rocco Ferraro responded with list of contact persons for sites

SOURCES -- NYSDOT SPILL NO. 811902 SITE (Page 3)

1			
Name/Address/Phone	Type of Contact	Date	Information Provided
Mr. Arthur Pasco Regional Administrative Officer NYSDOT Region 8 4 Burnett Boulevard Poughkeepsie, New York 12603	Letter Letter	1/3/86 1/28/86	Boring logs
New York State Department of Environmental Conservation 21 South Putt Corners Road New Paltz, New York 12561 (914) 255-5453	Office Visit	12/3/85	NYSDEC file information .
Lucille P. Pattison County Executive Dutchess County 22 Market Street Poughkeepsie, New York 12601 (914) 431-2020	Letter	1/3/86	None available
William R. Steinhaus County Clerk Dutchess County 22 Market Street Poughkeepsie, New York 12601 (914) 431-2120	Letter	1/3/86	None available
Mr. Stephen J. Wing County Attorney Dutchess County 22 Market Street Poughkeepsie, New York 12601 (914) 431-2110	Letter	1/3/86	None available
Dr. John Scott Health Commissioner Dutchess County 22 Market Street Poughkeepsie, New York 12601 (914) 431-2015	Letter Office Visits	1/3/86	Background information
Mr. Roger A. Keley Planning Commissioner Dutchess County 47 Cannon Street Poughkeepsie, New York 12601 (914) 431-2480	Letter Telephone Call Office Visits	1/8/86 1/21/86 2/3/86	Natural Resources well logs, community water systems information

SOURCES -- NYSDOT SPILL NO. 811902 SITE (Page 4)

Name/Address/Phone	Type of Contact	Date	Information Provided
Mr. James Spratt Public Works Commissioner Dutchess County 22 Market Street Poughkeepsie, New York 12601 (914) 431-2121	Letter Telephone Call	1/3/86 1/6/86	None available
Mr. Robert Vrana Solid Waste Management Dutchess County 22 Market Street Poughkeepsie, New York 12601 (914) 431-2115	Letter Telephone Call	1/3/86 1/6/86	None available
Soil and Water Conservation District P.O. Box 37 Farm & Home Center Millbrook, New York 12545 Attn: District Conservationist (914) 677-8011	Letter Letter	1/3/86 1/13/86	Irrigation practices County soil survey
Jay Maxwell, Sr. Route 22 Pawling, New York 12564	Personal Communicat	ion	Site access, site history
Sheryl Herrington Town Clerk Pawling, New York 12564 (914) 855-1122	Telephone Call	11/3/86	Village of Pawling water resources

4.0 SITE ASSESSMENT

4.0 SITE ASSESSMENT

4.1 SITE HISTORY

The NYSDOT Spill No. 811902 site is located along Route 22 in the Village of Pawling, Dutchess County, New York. The site consists of five parcels of land, approximately 20 acres in size. A gasoline contaminated well at Corral Ford was reported by the Dutchess County Health Department on March 22, 1982. Additional water samples taken in the vicinity of the site resulted in the discovery of gasoline contaminated wells at Mario's Pizza, Maxwell Engine Rebuilders, Venezia's Guest House, and Heinchan Dairy. Activated carbon filters were supplied by NYSDOH for private wells in the area. These filters are still in use.

On March 31, 1983 the New York State Department of Transportation authorized Empire Soils Investigations, Inc. to perform a complete hydrogeologic study of the site. As part of the initial site assessment performed by Empire Soils Investigations, Inc., a total of 19 monitoring wells were installed in the project area. Results of chemical analyses performed on groundwater samples obtained on June 22-24, 1983 from the monitoring wells conclude that the major source of hydrocarbon contamination encountered in the project area to be the Amoco gas station located along Route 22. This station is owned by Cole Petroleum of 35 Market Street, Cold Springs, New York. Presently, Cole Petroleum has not responded to NYSDEC requests to initiate clean-up activities.

4.2 SITE TOPOGRAPHY

The NYSDOT Spill No. 811902 site is located along Route 22, approximately three-quarters of a mile north of the Putnam-Dutchess County border. The area is predominately commercial with several surrounding businesses within 500 feet. Drainage in the vicinity of the site is via Brady Brook, a New York State Class C brook. Brady Brook flows approximately one mile past the site and to the southwest before flowing into the Great Pattern Swamp, a NYSDEC unique and significant habitat area. The Great Swamp is drained by the East Branch of the Croton River. The Great Swamp surface is New York State Class C in the vicinity of the site.

Elevation at the site is approximately 470 feet MSL. Higher elevation exists to the north, east, and south. On site, slopes are to the southeast for approximately 1,000 feet, while overall slopes are to the south.

4.3 SITE HYDROGEOLOGY

Information obtained from Empire Soils Investigations, Inc. and Thomsen Associates report, Hydrogeologic Evaluations Oil Spill, Village of Pawling, Dutchess County, New York indicates the site lies within the Hudson Hills physiographic province of New York State, an area characterized by igneous and metamorphic bedrock. Bedrock underlying the site consists of units of the Orodovician age Stockbrdige formation. Monitoring wells installed by Empire Soils Investigations, Inc. indicates bedrock underlying the site ranges in depth from 15 to 30 feet and consists of gray to white dolomite marble. This marble is extensively fractured and slickensided (polished and striated). Voids, soil-filled seams, weak friable zones of variable extent were commonly encountered during diamond core drilling operations and are detailed on the hydrogeologic logs.

The overburden in this area consists of a horizon of stratified glacial outwash classified by the United States Department of Agriculture (1955) as members of the Merrimae soil series. These soils are predominantly interbedded sand and gravels and are considered to be very rapidly permeable.

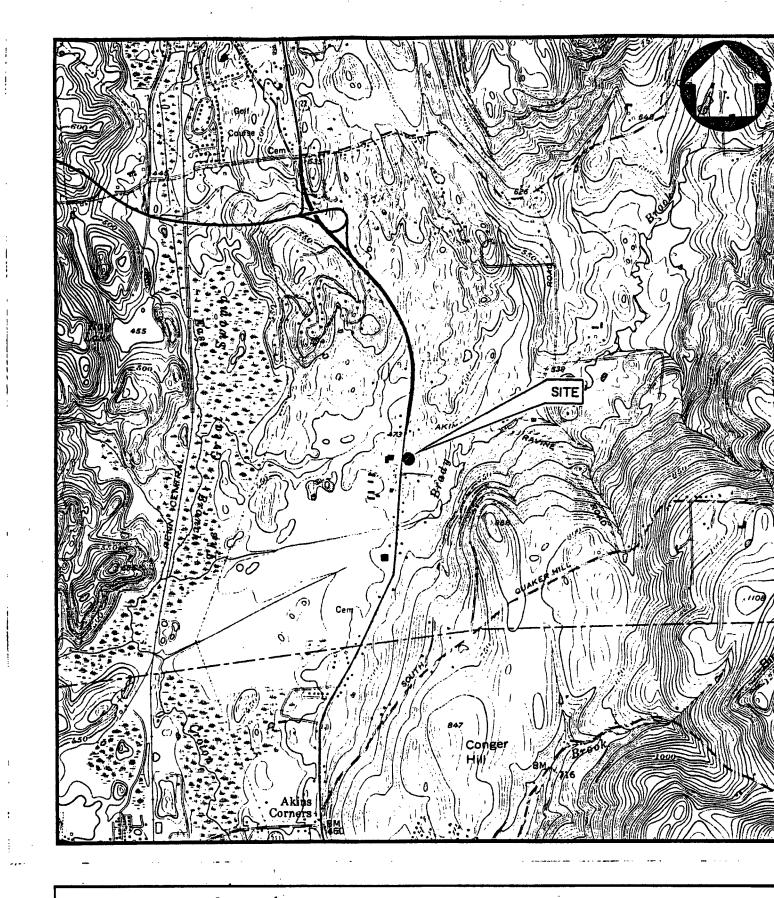
Water level observations in the monitoring wells indicate the water table to be situated in close proximity to the bedrock surface. Water level data obtained from the monitoring wells on May 19, 1983 were used to contour the water table over the site. These readings indicate the major component of groundwater flows beneath the site to be southward, discharging to Brady Brook south of the site, with minor southwestward and southeastward flow components also apparent. Water level data obtained from the monitoring wells indicates a general vertical downward flow component between the overburden sand and gravel and carbonate bedrock, providing a mechanism for migration of contaminants through the relatively permeable unconsolidated deposits and into the underlying bedrock aquifer.

This mechanism operates independently of, but may be enhanced by, downward flow induced locally by drawdown in water supply wells. Therefore, it is assumed that the overburden sand and gravel aquifer and the carbonate bedrock aquifer are hydraulically connected.

4.4 SITE CONTAMINATION

Results of chemical analysis performed on groundwater samples obtained on June 22-24, 1983 downgradient of the site in Monitoring Wells B-3, B-11R, and B-16R indicate hydrocarbon contamination of groundwater where the presence of gasoline is confirmed. Lesser concentrations of hydrocarbon compounds were detected downgradient of the site in Monitoring Wells B-17, B-6, and B-18R, while the remaining samples contained less than one part per billion for each of the parameters analyzed. Analysis of groundwater samples from Monitoring Well B-14, upgradient of the Amoco station, indicate no contamination of groundwater by hydrocarbons at that point. These chemical analysis results, in conjunction with the groundwater flow beneath the site to be southward, indicate a hydrocarbon (gasoline) contamination plume emanating from the Amoco station located along Route 22 in the Village of Pawling.

Actions at the site are being handled by NYSDEC, under the Division of Water, Oil Spills Program. Cost Recovery is being handled by the Attorney General's Office.


5.0 PRELIMINARY APPLICATION OF THE HAZARD RANKING SYSTEM

5.0 PRELIMINARY APPLICATION OF THE HAZARD RANKING SYSTEM

5.1 NARRATIVE SUMMARY

The NYSDOT Spill No. 811902 site is located along Route 22 in the Village of Pawling, Dutchess County, New York. The site consists of five parcels of land, approximately 20 acres in size. Groundwater in the vicinity of the site has been contaminated with petroleum hydrocarbons since the spring of 1982. Subsequent hydrogeologic investigations performed by Empire Soils Investigations, Inc. included the installation of 19 monitoring wells on site. Results of chemical analysis performed on groundwater samples obtained on June 22-24, 1983 from the monitoring wells conclude that the major source of hydrocarbon contamination encountered in the project area to be the Amoco gas station located along Route 22 in Pawling, New York. This gas station is owned by Cole Petroleum of Cold Springs, New York.

LOCATION

SCALE: 1" - 2000" TOPOGRAPHY TAKEN FROM PAWLING, NEW YORK - CONN. U.S.G.S. QUADRANGLE 1958 PHOTOREVISED 1971 AMS 6267 II SE - SERIES 821 7.5 MIN. SERIES

FIGURE 1

N.Y.S.D.O.T. SPILL NO. 811902 PAWLING, NEW YORK N.T.S. LAT. 41-32'-08'N LONG. 73-35'-08'W

HRS DOCUMENTATION RECORDS

FOR HAZARD RANKING SYSTEM

INSTRUCTIONS: The purpose of these records is to provide a convenient way to prepare an auditable record of the data and documentation used to apply the Hazard Ranking System to a given facility. As briefly as possible summarize the information you used to assign the score for each factor (e.g., "Waste quantity = 4,230 drums plus 800 cubic yards of sludges"). The source of information should be provided for each entry and should be a bibliographic-type reference that will make the document used for a given data point easier to find. Include the location of the document and consider appending a copy of the relevant page(s) for ease in review.

FACILITY NAME: NYSDOT Spill No. 811902

LOCATION: Route 22, Pawling, New York

GROUND WATER ROUTE

1 OBSERVED RELEASE

Contaminants detected (5 maximum):

Benzene
Toluene
M-xylene
O-xylene
Ethyl benzene

Score = 45

Source: References 1, 2

Rationale for attributing the contaminants to the facility:

Analysis of water samples taken from downgradient monitoring wells indicate hydrocarbon contamination in relation to samples taken from upgradient well exhibit no contamination.

Source: Reference 2

2 ROUTE CHARACTERISTICS

Depth to Aquifer of Concern

Name/description of aquifer(s) of concern:

There are two aquifers of concern at this site. They are the sand and gravel aquifer overlying the carbonate bedrock. According to Reference 2, the aquifers are hydraulically connected.

Source: References 2, 3, 10

Depth(s) from the ground surface to the highest seasonal level of the saturated zone (water table(s)) of the aquifer of concern:

Nineteen monitoring wells have been installed on site. Well depths vary from 11.75 to 38 feet. In the wells, reported water levels range from 10 feet to 19 feet.

Source: References 1, 2, 3

Depth from the ground surface to the lowest point of waste disposal/storage:

Depth of burial unknown; assume 6 feet. Depth of water table 10 feet. Distance between waste and water table 4 feet.

Source: References 1, 2, 5

Net Precipitation

Mean annual or seasonal precipitation (list months for seasonal):

44 inches

Source: Reference 5

Mean annual lake or seasonal evaporation (list months for seasonal):

28 inches

Source: Reference 5

Net precipitation (subtract the above figures):

16 inches

Score = 3

Source: Reference 5

Permeability of Unsaturated Zone

Soil type in unsaturated zone:

The soil types are predominately interbedded sands and gravels and are considered very rapidly permeable.

Source: Reference 2

Permeability associated with soil type:

 10^{-3} cm/sec.

 \cdot Score = 3

Source: Reference 5

Physical State

Physical state of substances at time of disposal (or at present time for generated gases):

Gasoline spill Liquid

Score = 3

Source: References 2, 3, 4

3 CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Containers: groundwater data indicates tanks in leaking condition, no liner, no leachate collection system. No method of waste containment observed or documented.

Trichloroethylene

1,4-Dichlorobenzene

1,3-Dichlorobenzene

1,2-Dichlorobenzene

Source: References 1, 2, 3, 4

Method with highest score:

No method of containment.

Score = 3

Source: References 1, 2, 3, 4

4 WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated:

Benzene

Ethyl benzene

Tetrachloroethylene

Toluene

M-xylene

O-xylene

Source: References 2, 3, 4

Compound with highest score:

1,4-Dichlorobenzene = 15

Benzene = 12

Dichlorobenzene (NOS) = 18

Source: References 2, 3, 4

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

Total quantity of hazardous waste present unknown.

Score = 1

Source: References 1, 2, 3, 4

Basis of estimating and/or computing waste quantity:

No data exists for quantity of waste but analysis of water samples from monitoring wells confirm presence of gasoline.

Source: References 2, 3, 4

5 TARGETS

Ground Water Use

Use(s) of aquifer(s) of concern within a 3-mile radius of the facility:

Residential drinking water; no alternative unthreatened sources available.

Score = 3

Source: References 1, 2, 3, 4, 8

Distance to Nearest Well

Location of nearest well drawing from <u>aquifer of concern</u> or occupied building not served by a public water supply:

On site five supply wells draw from aquifer of concern.

Source: References 1, 2, 3, 4

Distance to above well or building:

On site; distance to well is zero.

Value = 4

Source: References 1, 2, 3, 4

Population Served by Ground Water Wells Within a 3-Mile Radius

Identified water-supply well(s) drawing from aquifer(s) of concern within a 3-mile radius and populations served by each:

One community well and one surface water intake, population served = 2,000. Rural population = 767 houses, population = 2,915.

Source: References 8, 9

Computation of land area irrigated by supply well(s) drawing from aquifer(s) of concern within a 3-mile radius, and conversion to population (1.5 people per acre):

No known irrigation occurs within three miles.

Value = 0

Source: Reference 11

Total population served by ground water within a 3-mile radius:

Community population = 2,000; private dwellings = $767 \times 3.8 = 2,915$; total population = 4,915

Score = 4

Matrix Score = 35

Source: References 8, 9

SURFACE WATER ROUTE

1 OBSERVED RELEASE

Contaminants detected in surface water at the facility or downhill from it (5 maximum):

At this time, no observed release of contaminants to the surface water route has been reported although gasoline concentrations have been detected in on-site monitoring wells. Groundwater discharge to surface water may be occurring.

Score = 0

Source: References 1, 2, 3, 4

Rationale for attributing the contaminants to the facility:

Not applicable

2 ROUTE CHARACTERISTICS

Facility Slope and Intervening Terrain

Average slope of facility in percent:

Up to 10 percent.

Source: Reference 1

Name/description of nearest downslope surface water:

Brady Brook within 1,000 feet of site.

Source: Reference 1

Average slope of terrain between facility and above-cited surface water body in percent:

Five to six percent.

Matrix Score = 3

Source: Reference 1

Is the facility located either totally or partially in surface water?

No

Score = 3

is the facility completely surrounded by areas of higher elevation?

No

Source: References 1, 2, 3, 4

1-Year 24-Hour Rainfall in Inches

2.5 inches

Score = 2

Source: Reference 5

Distance to Nearest Downslope Surface Water

Approximately 1,000 feet to nearest surface water.

Score = 3

Source: Reference 1.

Physical State of Waste

Liquid

Score = 3

Source: References 2, 3, 4

3 CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

No method of waste containment observed or documented.

Source: References 1, 2, 3, 4

Method with highest score:

No method of containment.

Score = 3

Source: References 1, 2, 3, 4

4 WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated:

Benzene

Ethyl benzene

Tetrachloroethylene

Toluene

M-xylene O-xylene

Source: References 2, 3, 4

Trichloroethylene

1,4-Dichlorobenzene

1,3-Dichlorobenzene

1,2-Dichlorobenzene

Compound with highest score:

1,4-Dichlorobenzene = 15

Benzene = 12

Dichlorobenzene (NOS) = 18

Source: References 2, 3, 4

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum);

Total quantity of hazardous waste present unknown.

Score = 1

Source: References 1, 2, 3, 4

Basis of estimating and/or computing waste quantity:

No data exits for quantity of waste but analysis of water samples from monitoring wells confirm presence of gasoline.

Source: References 2, 3, 4

5 TARGETS

Surface Water Use

Use(s) of surface water within 3 miles downstream of the hazardous substance:

Use of surface water within three miles downstream of the site includes fishing.

Score = 2

Is there tidal influence?

No

Source: Reference 1

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

Not applicable

Source: Reference 1

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

A 50-60 acre wetland is located within three-quarter of a mile.

Score = 1

Source: Reference 1

Distance to critical habitat of an endangered species or national wildlife refuge, if 1 mile or less:

There is no significant wildlife areas within one mile.

Score = 0

Source: Reference 7

Population Served by Surface Water

Location(s) of water-supply intake(s) within 3 miles (free-flowing bodies) or 1 mile (static water bodies) downstream of the hazardous substance and population served by each intake:

No surface water intakes are located within the areas of concern.

Score = 0

Computation of land area irrigated by above-cited intake(s) and conversion to population (1.5 people per acre):

No known uses of surface water for irrigation have been identified.

Source: Reference 11

Total population served:

No known uses of surface water have been identified.

Source: Reference 8

Name/description of nearest of above water bodies:

Brady Brook within 1,000 feet of site.

Source: Reference 1

Distance to above-cited intakes, measured in stream miles:

No surface water intakes have been identified.

AIR ROUTE

1 OBSERVED RELEASE

Contaminants detected:

To score an air release, qualitative air sampling is required along with details on the sampling protocol and the meteorological conditions during the time of sampling. No qualitative air sampling has been performed.

Score = 0

Source: Reference 1 and File Review

Date and location of detection of contaminants:

Not applicable

Methods used to detect the contaminants:

Not applicable

Rationale for attributing the contaminants to the site:

Not applicable

2 WASTE CHARACTERISTICS

Reactivity and Incompatibility

Most reactive compound:

Not applicable

Most incompatible pair of compounds:

Toxicity

Most toxic compound:

Not applicable

Hazardous Waste Quantity

Total quantity of hazardous waste:

Not applicable

Basis of estimating and/or computing waste quantity:

Not applicable

3 TARGETS

Population Within 4-Mile Radius

Circle radius used, give population, and indicate how determined:

0 to 4 mi

0 to 1 mi

0 to 1/2 mi

0 to 1/4 mi

Not applicable

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

Not applicable

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

Distance to critical habitat of an endangered species, if 1 mile or less:

Not applicable

Land Use

Distance to commercial/industrial area, if 1 mile or less:

Not applicable

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

Not applicable

Distance to residential area, if 2 miles or less:

Not applicable

Distance to agricultural land in production within past 5 years, if 1 mile or less:

Not applicable

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Not applicable

is a historic or landmark site (National Register of Historic Places and National Natural Landmarks) within the view of the site?

FIRE AND EXPLOSION

1 CONTAINMENT

Hazardous substances present:

To score the fire and explosion hazard mode either a state or local fire marshall must have certified that the facility presents a significant fire or explosion threat to the public or to a sensitive environment, or there must be a demonstrated threat based on field observations (e.g. combustible gas indicator readings). The available records give no indication that either one of these tasks has been done. Further, the available data do not suggest any imminent threat of fire and explosion at this site. Therefore the route score cannot be completed.

Source: Reference 1 and File Review

Type of containment, if applicable:

Not applicable

2 WASTE CHARACTERISTICS

Direct Evidence

Type of instrument and measurements:

Not applicable

Ignitability

Compound used:

Not applicable

Reactivity

Most reactive compound:

Not applicable

Incompatibility

Most incompatible pair of compounds:

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility:

Not applicable

Basis of estimating and/or computing waste quantity:

Not applicable

3 TARGETS

Distance to Nearest Population

Not applicable

Distance to Nearest Building

Not applicable

Distance to Sensitive Environment

Distance to wetlands:

Not applicable

Distance to critical habitat

Not applicable

Land Use

Distance to commercial/industrial area, if 1 mile or less:

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

Not applicable

Distance to residential area, if 2 miles or less:

Not applicable

Distance to agricultural land in production within past 5 years, if 1 mile or less:

Not applicable

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Not applicable

Is a historic or landmark site (National Register of Historic Places and National Natural Landmarks) within the view of the site?

Not applicable

Population Within 2-Mile Radius

Not applicable

Buildings Within 2-Mile Radius

DIRECT CONTACT

1 OBSERVED INCIDENT

Date, location, and pertinent details of incident:

There has been no confirmed incident in which direct contact with hazardous waste has been observed or documented.

Score = 0

Source: Reference 1

2 ACCESSIBILITY

Describe type of barrier(s):

No barriers are present and there are no restrictions to site access.

Score = 3

Source: Reference 1

3 CONTAINMENT

Type of containment, if applicable:

No evidence of containment measures has been found during site investigation or file review.

Score = 15

Source: Reference 1

4 WASTE CHARACTERISTICS

Toxicity

Compounds evaluated:

Benzene
Ethylbenzene
Toluene
Tetrachloroethylene
M-xylene
O-xylene

Source: References 1, 2

Compound with highest score:

Benzene

Score = 2

5 TARGETS

Population within one-mile radius

Within one mile radius, population = 403

Score = 2

Source: House Count, USGS Pawling, New York Quadrangle

Distance to critical habitat (of endangered species)

There are no critical habitats within one mile.

Score = 0

666 EAST MAIN STREET P.O. BOX 2006 MIDDLETOWN, NY 10940

WEHRAN ENGINEERING - SITE INSPECTION FORM

IDENTIFICATION		•
NYSDOT Spill No. 811902	D:	utchess
Site Name		County
314060	Re	egion III
NY Number		NYSDEC Region
•		
LOCATION		
Route 22		•
Street/Route No.		Town
	Pawl	ing
City	•	Village
Pawling		
USGS Quadrangle		
Inspection	•	
1/8/86		1:00 P.M.
Date of Inspection	Ti	me of Inspection
clear, 20°, Cold		•
Wes	ather Conditions and Snow (Cover
WE Inspectors (Name)	Title	Phone Number
David B. Tompkins	Environmental Scientist	(914) 343-0660
Stephen Petrisko	Environmental Scientist	(914) 343-0660

Reference	1.2

ъл.		nterviewed	AI	filiation	Phone Number
IVL	r. Jay Max	well, Sr.	Reside	ent	
M	r. Jay Max	well, Jr.	Resid	ent	
. —				:	
SIT	E DESCRI	IPTION		•	
1 Site	e History		·	Active <u>x</u>	Inactive
			<u>.</u>		
	ars of Ope	ration:	Unknown		
Ow	ner(s):		Uknown		
<u> </u>	-				
				•	
-					
4.0	0	/D: / .	***	- \	
4.2	Storage	/Disposal (C	heck all that a	oply)	•
4.2	Storage	/Disposal (C	heck all that a	oply) Size/Amount	Unit of Measure
4.2	Storage	/Disposal (C Surface Im	•		Unit of Measure
4.2			•		Unit of Measure
4.2	_ A.	Surface Im	poundment		Unit of Measure
4.2	A. B.	Surface Im	poundment ove Ground		Unit of Measure
4.2	A. B. C.	Surface Im Piles Drums, Abo	poundment ove Ground re Ground		Unit of Measure
4.2	A. B. C. D.	Surface Im Piles Drums, Abo Tank, Abov	poundment ove Ground re Ground		Unit of Measure
4.2	A B C D x E F G.	Surface Im Piles Drums, Abov Tank, Abov Tank, Belov Landfill Landfarm	poundment ove Ground re Ground w Ground		Unit of Measure
4.2	A B C D x E F G H.	Surface Im Piles Drums, Abov Tank, Abov Tank, Belov Landfill Landfarm Open Dump	poundment ove Ground re Ground w Ground		Unit of Measure
4.2	A B C D x E F G H x I.	Surface Implies Drums, Above Tank, Above Tank, Belove Landfill Landfarm Open Dump	poundment ove Ground re Ground w Ground		Unit of Measure
4.2	A B C D x E F G H.	Surface Im Piles Drums, Abov Tank, Abov Tank, Belov Landfill Landfarm Open Dump Spill Well Field	poundment ove Ground re Ground w Ground		Unit of Measure

4.3	Tres	atme	ent (Check all that apply)			
		A.	Burning		E.	Waste Oil Processing
		B •	Incineration	_	F.	Solvent Recovery
		C.	Underground Injection		G.	Other Recycling/Recovery
		D.	Chemical/Physical/Biological		H.	Other (
4.4	Was	te Sı	ubstances Observed (include haz	ardou	<u>18)</u>	
-	E	3enz	ene, Toluene, Xylene, Ëthyl benz	zene,	Tetr	achloroethylene
				,		
		····				
		·		•		
				- · ·		
4.5	Cont	ainn	nent of Wastes (describe)			
	1	one				
		<u></u>				
	-					
	-	-				
					***************************************	·

	Accessibility of Public to	**************************************	
	No method of containm	ent observed	
		·	
			•
•	•		
NV	TRONMENTAL MEASUREM	ents (During Inspec	CTION)
1	HNU/OVA Readings (Note	locations on site sketch)
	Location	Value (ppm)	_
	Background	value (ppin)	Classification
	Dackground		
		 	
			•
			•
			•
	Mathed /Technical		
	Method/Instrument:		
2	Site Topography (Describe r		

5.8	Distance to Critical Habit	at (endangered species)		
	Name/Loc	cation	Distance	Units
	N/A			
5.9	Observed Site Geology (De	escribe from visual obser	vations)	
	Overburden (soils)	Unknown		
	Bedrock	Unknown		
	Depth to Rock	Unknown		
5.10	Distance to Nearest Potab	le Well (Identify on topo	graphic map)	•
	Type (Private/Comm	unity/Municipal)	Distance	Units
	<u>Private</u>	•	on-site	
	·	•		
				•
5.11	Distance to Nearest Off-Si	te Building		
	Within one-half	miles.		
5.12	Describe Source and Use of	Water on Site		
	Drinking Water			· · ·
		4		

6.0	LAN	ND USE
	6.1	Distance to Nearest:
		Residential Area miles
		Commercial/Industrial Adjacent miles
		Recreation Use miles
•		Forest miles
		Wildlife Reserve miles
		Historic/Landmark Site miles
		Prime Agricultural Land miles
		Agricultural Land miles
7.0	SITE	EVALUATION
•	7.1	Landfills/Open Dumps/Piles (Use N/A if not applicable) N/A
		Adequacy of Cover:
		Adequacy of Runoff Diversion:
		Potential/Observed Ponding:
		Waste Piles Stabilized/Unstabilized:
		Permeability/Compatibility of Liner:
		Observed Seeps:
		Adequacy of Leachate Collection:
		Adequacy of Run-On Controls:

Surface Impoundments Size/Capacity	
Adequacy of Diking/Diversion Structures	5:
Adequacy of Freeboard:	
Potential/Observed Leaking:	
Adequacy of Run-On Control:	
Adequacy of Leachate Collection System	is
Containers Number and Type of Containers Observed	i:
Container Condition:	
Observed Leaking (during inspection):	
Evidence of Previous Ground Spills:	Suspected evidence of previous spills
Evidence of Underground Tank Leaking:	Suspected
Adequacy of Containment/Diversion Struc	etures:
Adequacy of Containment/Diversion Struc	etures:

	0 4	37	A							
	8.1	Number	Number of On-Site Wells:			19				
		Diamete	r and Materi	als:		Two inches	ΨV	C .		
	8.2		of Off-Site			·		·		
	8.3	Well Ider	ntification ar	nd Inspect	ion (Include	on-site sk	etch	_		_
								Water	Lev	rel (ft) ¹
		Well No.	Location/ Gradient	Total Depth	Screen Interval	Top of Water	-	Stickup	=	Depth to Water
							-		=	
							-		=	
							-		=	
							-		=	
				 ;			-		=	
				-			-		=	
							_		=	
							-	<u>·</u>	=	
¹ Mea	sure	ments take	en during site	e inspectio	on to accura	ey of 0.01	ft.			
ı	8.4	Water Lev	vel Instrume	nt/Method	<u>l:</u>					
			c Probe		•					

Good	,	
		·
Well Records (from s	ite owner, operator, o	or contractor)
	riller): Empire Soils	•
	pire Soils and Thomse	
· · · · · · · · · · · · · · · · · · ·	o Labs, Galson Techn	
Data Obtained by WE	(yes/no):	Yes
Boring Logs Obtained		Yes
•		•
leadspace HNU/OVA	Readings	·
Well No.	Reading (ppm)	Classification
lackground		
·		
	A Medical Schools	
		
	•	

	. /	•				
	····			*****		
·			. ,			
	•	•				
				·		
•						
				•		
	···					
			•			
					•	
					•	
					•	
						
			•			
	•	•				
•					*	
				······································		
					•	
			<u> </u>			

Ref. 2:1

REG. DIR. PEDSY	
AST. TO RO FLANT OF	
ADMIN. BEAL BET	
	ii
REC'D 1	REG.
OCT OF 1000	
DOT 1001 2 5 1983	O
	0
CONST. TO SERVER	, —
DESICH	-!
FORT	
HWY. MAINT.	
T PAST, MAINT,	

HYDROGEOLOGIC EVALUATIONS
OIL SPILL
VILLAGE OF PAWLING
DUTCHESS COUNTY, NEW YORK

SPILL NO. 811902 P.I.N. SP 1633.701

for

NEW YORK STATE
DEPARTMENT OF TRANSPORTATION
OIL SPILL PREVENTION & CONTROL BUREAU

and

NEW YORK STATE
DEPARTMENT OF TRANSPORTATION
REGION NO. 8

JOHN SCHAFF
Assistant Regional Oil Spill Engineer

prepared by

EMPIRE SOILS INVESTIGATIONS, INC.

E
THOMSEN ASSOCIATES

File No. GTA-82-17J October 1983

October 24, 1983

New York State Department of Transportation 4 Burnett Boulevard Poughkeepsie, New York 12603

Attention: John Schaff

Assistant Regional Oil Spill Engineer

Reference: Hydrogeologic Evaluations

Hydrocarbon Spill

Pawling, Dutchess County, New York

Spill No. 811902 P.I.N. SP 1633.701

Gentlemen:

Enclosed please find three (3) copies of our report of findings prepared in connection with the referenced hydrocarbon spill.

This report presents the results of work performed on this project by Empire-Thomsen through August 31, 1983. The information contained in this report incorporates and supersedes our previously submitted correspondence.

The findings of this study indicate the major source of hydrocarbon contamination encountered in the monitoring wells in the project area to be the Amoco station on NYS Route 22. Observations during the course of this study show this contamination to be primarily dissolved hydrocarbon compounds; no measureable free product has been noted at any of the data points in the area.

This study was intentionally restricted to the upper portions of the local aquifer in efforts to determine the apparent source area(s) of hydrocarbon contamination. However, for spill remediation purposes the need to visualize this contamination problem in three dimensions cannot be overstressed. In addition to the presence of hydrocarbons in the upper zone of the aquifer, volatile contaminants are found in groundwater at depths indicating their vertical migration due to pumping from deep water supply wells. In the absence of construction details of these supply wells, or a deep groundwater quality monitoring network,

New York State Department of Transportation October 24, 1983 Page 2

the full extent and severity of the vertical component of contamination cannot presently be defined. Accordingly, appropriate additional work as outlined in the Recommendations section of this report is strongly urged to resolve this problem.

In terms of spill remediation a coordinated approach, involving elimination of source(s) of contaminant input as well as the mechanisms of vertical contaminant migration within the aquifer, is recommended. Subsequent to implementation of such actions ongoing assessment of local groundwater quality by means of periodic sampling from the monitoring wells is warranted, as detailed in the report.

Should you have any questions or comments regarding the contents of this report, please feel free to contact our office.

We appreciate the opportunity to assist your office with this investigation, and we look forward to working with you on future projects.

Respectfully submitted,

THOMSEN ASSOCIATES

EMPIRE SOILS INVESTIGATIONS, INC.

Ronald Ausburn, CPGS

Project Manager

Marjory B. Rinaldo-Lee, CPGS Senior Hydrogeologist (Reviewer)

TABLE OF CONTENTS

Cover Letter

Section		Page
1.0	INTRODUCTION	
	1.1 Project Initiation	1 2 3 4 4
2.0	INVESTIGATIVE METHODOLOGY	
	2.1 Subsurface Investigations	5 7 8
3.0	FINDINGS OF INVESTIGATIONS	
	3.1 Site Location	14 16
4.0	CONCULSIONS AND RECOMMENDATIONS	
	4.1 Conclusions	21 22
	REFERENCES	24
	List of Appendices	
	Appendix A - Drawings Appendix B - Hydrogeologic Logs & Key Appendix C - Tabulated Water Level Data Appendix D - Mechanical Analysis Results Appendix E - Chemical Analysis Results	

SECTION 1

INTRODUCTION

1.1 PROJECT INITIATION

- This report presents the results of ongoing studies 1.1.1 Empire Soils Investigations, Inc. and its affiliated geo-Thomsen Associates, related technical consultant, hydrocarbon contamination of groundwater in the vicinity of the village of Pawling, Dutchess County, New York. particular phase of study was authorized by the office of the New York State Department of Transportation (NYSDOT) Regional Oil Spill Engineer (ROSE) on March 31, 1983, and was completed under the auspices of an Agreement (Contract D200165) between the NYSDOT Oil Spill Prevention and Control Bureau and Empire Soils Investigations, Inc., pertaining to hydrogeologic investigations at oil spill sites.
- 1.1.2 Personnel involved in this study included the Assistant Regional Oil Spill Engineer for NYSDOT Region 8, John Schaff; Ronald Ausburn, CPGS, engineering geologist and project manager for Thomsen Associates; and Stephen Rossello, hydrogeologist with Thomsen Associates.
- 1.1.3 General aspects of the field exploration program dealt with herein, including specifications and locations for test borings and groundwater monitors, were agreed upon by the office of the Regional Oil Spill Engineer and Thomsen Associates prior to initiation of such work. Specific material sampling and monitor installation details were as dictated by the actual field conditions encountered. Exploratory drilling and monitoring well installations were performed by personnel and equipment from the Groton, New York operations office of Empire Soils Investigations, Inc.

Necessary site survey work was performed by Thomsen Associates personnel. For the purposes of this report, all elevations are referenced to an assumed datum of 100.0 feet at the benchmark location shown on drawings attached hereto.

1.2 PROJECT OBJECTIVE AND SCOPE

- 1.2.1 The goal of this investigation was to determine both the source area(s) and areal extent of hydrocarbon contamination documented by the Regional Oil Spill Engineer in several water supply wells in the project area. The supply wells involved are those serving Corral Ford, Marios Pizza, Heinchon Dairy and Hawkey's Surplus Store. If feasible, the site-specific data obtained in the process of meeting these objectives was to be utilized for formulation of general replacement supply well parameters and contamination abatement alternatives.
- 1.2.2 As formally authorized by the office of the Regional Oil Spill Engineer, Empire Soils Investigations, Inc./Thomsen Associates were to complete subsurface investigations and hydrogeologic analyses required to satisfy project objectives. Results of such studies, including recommendations for any supplemental work deemed adviseable, were to be presented in a report submitted to the Regional Oil Spill Engineer.
- 1.2.3 Of concern to both the office of the Regional Oil Spill Engineer and Thomsen Associates during all phases of this investigation was the potential for vertical contaminant migration, via the exploratory boreholes, within the local aquifer. To minimize the possibility of such cross contamination, the scope of services provided by Empire Soils Investigations, Inc./Thomsen Associates included the formulation and use of specialized, site-specific drilling procedures as described in Section 2, Investigative Methodology.

1.2.4 As specifically directed by the Regional Oil Spill Engineer, use of construction details, water level data and chemical analysis results for local water supply wells, and access to these wells, was to be of limited extent in this phase of study. An additional NYSDOT-mandated limitation in this investigation included restriction of exploratory work to the uppermost zones of the local aquifer and bedrock.

1.3 PREVIOUS WORK

- 1.3.1 Initial hydrogeologic evaluations at this site were performed by Thomsen Associates in January 1983 and included limited assessment of the character of local unconsolidated deposits by means of shallow test borings and monitoring wells. Results of this study were furnished to the Regional Oil Spill Engineer in a preliminary report dated January 20, 1983 (Empire Soils Investigations, Inc. 1983a). Pursuant to directives from the Regional Oil Spill Engineer, no investigations of the local bedrock aquifer or contaminated water supply wells were performed at that time.
- 1.3.2 In March 1983, selected contaminated water supply wells in the project area, designated by the Regional Oil Spill Engineer, were investigated for presence of free hydrocarbon in the well bore itself by means of a water level probe inserted in the well. At that time, water levels were determined in these wells and were utilized to contour the water table. These findings were presented to the Regional Oil Spill Engineer in a report submitted March 10, 1983 (Empire Soils Investigations, Inc., 1983b).
- 1.3.3 Findings of these initial phases of work by Thomsen Associates are incorporated in, and superseded by, this report.

1.4 POTENTIAL HYDROCARBON SOURCES

- 1.4.1 Potential hydrocarbon sources considered in this investigation include an active Amoco service station; vehicle maintenance facilities at an active auto dealership; motor cleaning and repair facilities at Maxwell Engine Rebuilders; buried storage tanks at a florist shop, and buried fuel tanks at Heinchon Dairy. All of these potential contaminant sources are situated within the limits of the area studied, as shown on Drawing 3 of Appendix A.
- 1.4.2 Potential hydrocarbon contamination associated with vehicle traffic and parking areas was also considered in these evaluations.

1.5 SUPPLY WELL INVENTORY

1.5.1 In general, water supply wells in the study area are cased through unconsolidated materials and extend into bedrock to variable depths in excess of 100 feet (Schaff, 1982).

SECTION 2

INVESTIGATIVE METHODOLOGY

2.1 SUBSURFACE INVESTIGATIONS

- 2.1.1 As part of the initial site assessment (Empire Soils Investigations, Inc., 1983a), a total of nine boreholes, numbered 1 through 9, were advanced through unconsolidated deposits in the project area. Those boreholes encountering free groundwater, numbers 3 and 6, were converted to permanent groundwater monitors via the installation of PVC wellscreen and riser. For reference purposes the Subsurface Logs for these test holes are included in Appendix B. Note that due to the limited scope of investigation at that time, most boreholes were terminated upon encountering auger "refusal". In the absence of diamond core drilling, such refusal is interpreted as indicating the presence of boulders or bedrock.
- 2.1.2 Ongoing studies detailed in this report consisted of the placement of seventeen additional monitoring wells in the project area in the period April 27 through May 12, 1983. These new installations were numbered B-8 and B-10 through B-19 inclusive; borehole B-8 was made at the same location as test boring number 8 of January 1983 and retains that designation. Monitors B-8, B-10, B-11, B-14, B-16 and B-18 consist of multiple installations (monitor clusters) constructed to facilitate discrete groundwater sampling at various depths within the aquifer, as well as assessment of hydraulic relationships between overburden and bedrock. In these multiple installations the designation "R" is used to indicate the monitor screened in rock.

- 2.1.3 Each monitoring well is constructed of flush-threaded, machine slotted nominal two inch diameter PVC wellscreen and riser, with teflon tape used in all joints. The screened interval of monitors placed in unconsolidated (overburden) material extends above the water table, permitting entry into the well casing of any free hydrocarbon which may be floating upon the water table. Monitoring wells extending into bedrock are screened at various intervals which reflect the character of the bedrock at each specific well location. Construction details of specific monitors are indicated on the appropriate Subsurface and Hydrogeologic Logs in Appendix B.
- Due to mechanical and size restrictions inherent in the 2.1.4 drilling procedures used, monitor clusters were constructed in separate boreholes situated in close proximity to one another to facilitate sampling of discrete depth intervals at one location within the aguifer. This methodology was also selected over the alternative procedure of multiplewell installations in a single borehole to minimize the potential for cross-contamination. At locations where monitor clusters were installed the deeper bedrock monitor was To install the bedrock monitor, a pilot completed first. hole was drilled through overburden using hydraulically advanced hollow stem auger casing. When the apparent surof "sound" bedrock was reached the augers face withdrawn and flush threaded pipe casing was spun into the pilot hole and seated approximately 3 to 6 inches into hard Bedrock was core drilled within the casing and the monitoring well subsequently installed. A bentonite seal was placed within the casing at the soil-rock interface and the pipe casing was then withdrawn. With subsurface condilocation thus defined, tions each well overburden monitors were installed to appropriate depths immediately adjacent to the deep wells.

- 2.1.5 As indicated on the test boring logs, split barrel samples (American Society for Testing and Materials, 1983a) were obtained in overburden in selected test borings to define the local soil profile. Diamond core drilling (American Society for Testing and Materials, 1983b) was performed in the upper portions of the bedrock horizon at various locations in the project area to obtain data on rock type, structure and character.
- 2.1.6 All recovered soil and rock samples were described by the on-site geologist and field foreman during operations. Following completion of field study, samples were forwarded to laboratory facilities where they were visually examined and described in greater detail by an engineering geologist, and final Subsurface and Hydrogeologic Logs (Appendix B) were prepared. Overburden samples were classified in general accordance with the Unified Soil Classification System (see Appendix B, "Key to Hydrogeologic Logs"). Rock core was also logged in detail in the laboratory (American Institute of Professional Geologists, 1977).
- 2.1.7 Grain size analyses were performed on representative split barrel samples to confirm the visual classifications and provide data on the grain size distribution of the overburden deposits. Results of these analyses are included as Appendix D.

2.2 HYDROGEOLOGIC DATA

2.2.1 On May 10, 1983, field permeability or "slug" tests (Bouwer and Rice, 1976) were performed in monitoring wells screened in overburden (B-3, B-10, B-16 and B-18); these tests included both rising head and falling head tests. On that same date, constant head tests (United States Department of the Interior, 1977) were performed in bedrock monitors B-8R

and B-12R, which reflect the extremes in rock quality noted in the boreholes. Results of these tests are discussed further in Section 3, Findings of Investigations.

2.2.2 Water levels in the monitoring wells and selected supply wells at the site were determined by Thomsen Associates personnel on various dates through the use of an electric well probe. Concurrently, the monitoring wells were investigated for the possible presence of free product by means of a transparent surface sampler. Water level data is summarized in tabular form in Appendix C.

2.3 GEOCHEMICAL DATA

On June 22-24, 1983, groundwater samples and water levels 2.3.1 were obtained from monitoring wells in the project area by In addition to Camo Laboratories, Poughkeepsie, New York. samples of standing ("stagnant") water from the wells, these samples included "regenerated" water samples obtained following evacuation of five volumes of water from the wells. All samples were analyzed by Camo Laboratories for NYSDOT 602 aromatic hydrocarbons, and results of these analyses are presented in Appendix E. This appendix contains pertinent portions of a detailed analytical report prepared by Camo furnished Thomsen Laboratories for the ROSE and Associates by the NYSDOT Oil Spill Engineer.

SECTION 3

FINDINGS OF INVESTIGATIONS

3.1 SITE LOCATION

- 3.1.1 The project area is located in southeastern Dutchess County, New York, approximately 19 miles southeast of the city of Poughkeepsie, New York and 18 miles northwest of Danbury, Connecticut. The site is found on the Pawling, New York/Connecticut USGS 7.5 minute topographic quadrangle, as indicated on Drawing No. 1, Site Location Map, in Appendix A.
- 3.1.2 This site is situated in the valley of the East Branch of the Croton River, which flows south through Putnam and Westchester Counties to a confluence with the Hudson River. Elevations on the valley floor in the area range from approximately 430 to 450 feet above mean sea level; uplands marginal to the valley form scarps rising rapidly to elevations of 850 feet or more above mean sea level.

3.2 GENERAL LOCAL GEOLOGY

3.2.1 The site lies within the Hudson Hills physiographic province of New York State, an area characterized by igneous and metamorphic bedrock, drainage controlled by the Hudson River, and narrow steep-walled valleys (Thompson, 1966). These valleys generally reflect local bedrock structures, being developed along zones of bedrock faults and folds which trend regionally to the northeast (New York State Museum and Science Services, 1962). Valley floors are relatively level, underlain by limestone and filled with glacial drift, uplands consist of resistant crystalline rocks (Simmons, et.al., 1961).

- 3.2.2 Unconsolidated deposits in the project area consist of a horizon of stratified glacial outwash classified by the United States Department of Agriculture (1955) as members of the Merrimac soil series. These soils are predominantly interbedded sands and gravels, deep to bedrock, and are considered generically "very rapidly permeable". Glacial outwash deposits comprise the most productive unconsolidated aquifer in Dutchess County (Simmons, et.al., 1961).
- Local bedrock consists of units of the Orodovician-age 3.2.3 Stockbridge Formation (New York State Museum and Science Service, 1970). In northwestern Dutchess County these units are essentially undisturbed dolomitic limestone (magnesiumcalcium carbonate). Southeastward across the however, the deformation and metamorphism of these units, related to the Taconic Orogeny, intensifies to the extent that the limestones have been totally metamorphosed and Impure. friable recrystallized dolomitic marbles. to (crumbly) sandy interbeds are commonly noted within the limestone and marble. The Stockbridge Formation is the major bedrock aguifer in Dutchess County and ranges from approximately 1000 to 3000 feet in thickness in the county (Simmons, et.al., 1961).
- 3.2.4 The East Branch of the Croton River occupies a topographic feature, referred to as the Harlem Valley, which is actually the surface expression of underlying bedrock structure. Based upon detailed fieldwork, Balk (1936) concluded that the Harlem Valley represents an anticline (upfold), the limbs of which are defined by scarps of crystalline rock and the core of which is composed of marble. Differential weathering, i.e., more rapid weathering and erosion of the weaker carbonate bedrock in the center of the anticline, accounts in large part for the topography presently observed.

- 3.2.5 Locally, bedrock structure is extremely complex; both normal and thrust faults are common as are overturned folds and belts or zones of "plastic deformation" (Balk, 1936). As a result of this deformation, the orientation of features critical to groundwater flow through bedrock, such as bedding planes and fractures ("secondary permeability") varies significantly over short distances.
- The variation in orientation of secondary permeability fea-3.2.6 tures is further complicated by incipient karst (sinkhole) topography developed in the readily-weathered Through time, groundwater flow (Simmons, et.al., 1961). through secondary channels has resulted in solution, erosion and enlargement of these features into interconnected, open or sand-filled cavities and conduits within the rock. addition to such solution activity along planar features, differential weathering of poorly-cemented and/or relatively more permeable strata within the rock mass is also extensive, as is apparent from inspection of outcrops in the vicinity of the project area.

3.3 SITE SPECIFIC GEOLOGY

3.3.1 As shown on Drawing 2, Vicinity Map, the site occupies a stretch of terrain along New York State Route 22, which in the project area is itself situated on a ridge rising slowly to the north. Ground slopes moderately to the southwest and southeast from the central portion of the site toward Brady. Brook, a tributary of the East Branch of the Croton River. Overall topographic relief in the study area is on the order of twenty-five feet.

- As indicated on the test boring logs (Appendix B) the boreholes completed for this investigation penetrated surficial
 fill materials underlain by granular glacial outwash consisting of loose to firm, interbedded sands and gravels.
 Results of grain size analyses performed on representative
 samples recovered from various locations and depths within
 this horizon (Appendix D) indicate these sediments to be
 largely fine to coarse sand with variable percentages of
 gravel and generally twenty percent or less of "fine"
 material (silt and clay).
- 3.3.3 Compact glacial till was noted beneath the outwash horizon in several test borings. However, this till layer is thin and discontinuous, and in most areas of the site the granular outwash deposits were seen to directly overlie bedrock.
- In several test borings (B-11, B-13, B-16 and B-17), subsur-3.3.4 face conditions and the limited sampling program undertaken made delineation of the bedrock surface in those areas difthese \ Immediately overlying hard bedrock in ficult. boreholes is a zone which may represent glacial severely to completely "nested" boulders in outwash, weathered bedrock (saprolite) or, in some instances, solution breccia related to collapse of cavities in bedrock. Although generally three to four feet in thickness, this zone appears to be in excess of ten feet thick in some portions of the site (B-16 and B-17) and, in these areas, is believed to represent saprolite or collapsed rock (see section 3.3.6).

- 3.3.5 Bedrock underlies the project area at depths ranging from fifteen to thirty feet in the boreholes and consists of gray This marble is extensively to white dolomitic marble. jointed (fractured), and slickensided (polished striated) fracture surfaces attest to folding and faulting of the rock. Voids, soil-filled seams and weak, friable zones of variable extent were commonly encountered during diamond core drilling operations and are detailed on the Hydrogeologic Logs. Also shown on the test boring logs are the core recovery ratios and RQD (Rock Quality Designation) These figures range from 90 percent or in each borehole. better in boreholes B-8, B-10, and B-13 in which they are indicative of excellent quality, relatively sound rock (American Institute of Professional Geologists, 1977) to 50 percent or less in test holes B-12 and B-18, values characteristic of poor quality rock. This range in RQD values illustrates the wide variation in bedrock quality over the The detailed descriptions on the Hydrogeologic Logs also reflect the vertical irregularities common in the bedrock which result from selective weathering, with hard, found interbedded with extremely weathered sound zones strata.
- 3.3.6 Comparison of site plans (Drawings 1, 2 and 3) with the results of the rock coring performed for this study suggests correlation between bedrock quality and several topographic depressions in the project area, aligned immediately east of Route 22. Several of the boreholes which reflect complex or uncertain subsurface conditions and poor bedrock quality (B-12, B-16, B-17 and B-18) are situated within, peripheral to, or along the alignment of these depressions, which are themselves believed to be areas of subsidence (sinkholes) over concealed bedrock structure or weak, poor-quality rock.

3.3.7 Based upon test boring data, an interpretation of the general configuration of the bedrock surface is presented as Drawing No. 4 in Appendix A. The contours inferred for the concealed bedrock surface indicate a bedrock "high" immediately south of the Amoco station, with the rock surface sloping moderately to the northeast, south and southwest. The inferred presence of concealed bedrock structure(s) near borehole B-17 is illustrated on Drawing 4 by the depression contour around that point.

3.4 LOCAL HYDROGEOLOGIC REGIME

- 3.4.1 Water level observations in the monitors indicate the water table in the project area to be situated in close proximity to the bedrock surface. Due to seasonal fluctuations the water table itself, periodically, may be within bedrock in some areas of the site. Water level data from the cluster monitors indicates a general vertical downward flow component between the overburden and bedrock, providing a mechanism for migration of contaminants through the relatively permeable unconsolidated deposits and into the underlying bedrock aquifer. This mechanism operates independently of, but may be enhanced by, downward flow induced locally by drawdown in water supply wells.
- 3.4.2 Water level readings in the monitoring wells for May 19, 1983, were used to contour the water table over the site as illustrated on Drawing 5 of Appendix A. These readings indicate the major component of groundwater flow beneath the site to be southward, discharging to Brady Brook south of the site, with minor southwestward and southeastward flow components also apparent. This flow regime is indicated by the large and small arrows, respectively, on Drawing 5. Although not plotted, water level data obtained on other dates from the monitoring wells indicate similar groundwater flow conditions in the project area.

- 3.4.3 Results of slug tests performed in monitors screened in overburden indicate the horizontal permeability of the glacial outwash deposits to vary between 1 X 10^{-2} cm/sec to 8 x 10^{-5} cm/sec. The range of results may be attributed to the stratified nature of the sediments, with horizontal permeabilities being greater in coarser strata and layers lower in content of "fines" (minus 200 sieve material). Utilization of effective grain size (d_{10}) , as determined by laboratory tests on representative split barrel samples (Appendix D), to estimate overall permeability of the overburden deposits (Rose and Smith, 1957) yields values of approximately 5 x 10^{-2} cm/sec.
- 3.4.4 Constant head tests were performed in monitoring wells constructed in bedrock and selected as representing extremes in rock quality in the boreholes in the project area. Tests in sound rock (B-8R) yield results of 2 x 10⁻³ cm/sec, while tests conducted in poor quality, "seamy" bedrock (B-12R) indicate a greater permeability, on the order of 1 x 10⁻² cm/sec.
- 3.4.5 Moderate horizontal groundwater gradients are noted in the area, ranging from 0.01 between monitors B-14 and B-12 on May 19, 1983, to 0.02 between wells B-14 and B-8 on that date. Utilizing the permeability (k) value of 1 x 10⁻² cm/sec obtained from field tests, and asssuming an average horizontal gradient of 0.015 and an effective porosity of 25 percent in the overburden deposits, horizontal groundwater flow velocity in the project area is estimated to be of the order of magnitude of 1.5 feet per day, or in excess of 500 feet per year.

- 3.4.6 Water levels noted in the monitoring wells through the course of this study indicate depth to the water table over the site to vary seasonally by several feet or more. In that portion of the site in the vicinity of boreholes B-10, B-15 and B-18, these fluctuations result in the seasonal high water table being within the unconsolidated deposits and low water tables in the underlying bedrock. Vertical transport of contaminants through the soil profile with the fluctuating water table results in a zone of variable thickness of residually contaminated soil; infiltration through this zone may leach contaminants from the soil, with resultant increase in severity and/or persistence of groundwater contamination. This situation may be noted for some time following removal of actual source(s) of contamination.
- 3.4.7 It should be pointed out that groundwater flow is intergranular, occurring through pore spaces in unconsolidated materials. Groundwater flow through bedrock, however, is facilitated predominantly by secondary permeability features as discussed above. Selective or preferential contaminant migration along certain fractures or fracture sets commonly occurs in bedrock.

3.5 HYDROCARBON CONTAMINATION

3.5.1 Results of chemical analyses performed on groundwater samples obtained on June 22 - 24, 1983, from the monitoring wells in the project area are included with this report as Appendix E. Note that samples from the surface of the standing water column as well as of "regenerated" groundwater were collected from those monitors containing water; all samples obtained were analyzed for concentrations of selected aromatic hydrocarbons.

- 3.5.2 The chemical anlysis results indicate hydrocarbon contamination of groundwater in monitors B-3, B-11R and B-16R, where the presence of gasoline is indicated, as well as in monitor B-18R, where gasoline was not confirmed. Lesser concentrations of hydrocarbon compounds are also apparent in analyses of regenerated water from monitors B-17 and B-6, while remaining samples contained less than one part per billion of each of the parameters analyzed.
- 3.5.3 A plot of total aromatic hydrocarbon concentrations in regenerated water samples is presented as Drawing 6 in Appendix A. As indicated on Drawing 6 and by the geochemistry of water samples from monitoring wells B-3, B-11R, B-16R and B-18R, a contaminant plume extends downgradient from the Amoco station and encompasses the Surplus Store water supply well. Analyses of groundwater samples from monitor cluster B-14, upgradient of the Amoco station, indicate no contamination of groundwater by hydrocarbons at that point.
- 3.5.4 Data pertaining to hydrocarbon contamination in monitor B-17, due to location of this monitor downgradient of both the Amoco station and Maxwell Engine Rebuilders, is presently inconclusive and therefore open to alternative interpretations. This contamination may represent either the periphery of the contaminant plume emanating from the Amoco station, or hydrocarbon contamination originating from Maxwell Engine Rebuilders.
- 3.5.5 No measurable free product has been observed in the monitors or supply wells investigated in the project area during the time frame of this study. However, a distinct hydrocarbon odor and film in auger cuttings and wash water were observed during the drilling of monitor B-15 immediately south (downgradient) of buried storage tanks at the Amoco station. Due to fluctuation of the water table (3.4.6), this monitor was dry at the time of chemical sampling in June 1983.

- 3.5.6 Geochemical data, in conjunction with site hydrogeology, indicate the major source of hydrocarbon contamination of the subsurface in the project area to be the active Amoco station on Route 22.
- 3.5.7 The presence of "windows" (deep, active supply wells) in the local aquifer, within and immediately downgradient of the source area and contaminant plume, enhances the potential for vertical migration of contaminants within the aquifer due to pumping from these wells. This occurrence is documented by cluster monitor B-16, where geochemical data indicates the presence of volatile hydrocarbon compounds in deep monitor B-16R but not in the monitor screened across the water table, where such contamination would normally be found. This situation is interpreted as indicating vertical migration of contaminants within the aquifer resulting from pumping in the Supply Store water well.

3.6 REMEDIATION & REPLACEMENT WATER SUPPLIES

Efforts should be undertaken to ascertain and remove the 3.6.1 actual sources of contaminant loss at the Amoco station, and to determine the nature of any such losses, such as isolated versus ongoing release from tanks, plumbing, pumps or other Following cessation of any direct contaminant sources. release, residual contamination (3.4.6) should be minimized through removal of contaminated soil and its replacement by clean material, with the source area capped with impermeable material as appropriate to reduce infiltration and leaching of residual contaminants into groundwater. Removal, replacement and encapsulation is recommended due to the restricted areas and volumes anticipated and the probability of persistent groundwater contamination if action is not taken toreduce or eliminate residual soil contamination.

- 3.6.2 Use of hydrocarbon-containing agents to clean equipment at Maxwell Engine Rebuilders should be restricted, or such cleansing should be performed only on decontamination pads allowing containment and recovery of any solvents used.
- 3.6.3 Surface runoff from the engine wash area at Maxwell Engine Rebuilders flows toward the wellhouse at Mario's Pizza, with resultant potential for direct hydrocarbon contamination of that supply well. Measures in addition to 3.6.2 above to reduce this potential are recommended.
- 3.6.4 Under present conditions, new large-capacity water supply wells in the area, such as that for Burger King immediately north of the Amoco station, may alter groundwater and contaminant flow directions and rates or otherwise effect the local groundwater flow regime. Cluster monitor B-14 does not extend to depths in the aquifer suitable for detection of possible contaminant migration toward the Burger King supply well.
- 3.6.5 Remedial actions should include, but not be limited to, measures outlined in 3.6.1 and 3.6.2. In addition, dilution and dispersion of hydrocarbon contamination in groundwater should occur in a relatively short time if contaminant input were to be restricted through procedures outlined above, and vertical migration of contaminants into the deep bedrock groundwater system was eliminated by temporary abandonment of the deep water supply wells affected by contamination.
- 3.6.6 It should be realized that an aquifer system such as that in the project area, with relatively permeable granular sediments unprotected at the surface and hydraulically connected to a bedrock aquifer of high permeability itself, is very susceptible to widespread lateral and vertical contamination

if reasonable precautions are not undertaken. "Normal" hydrocarbon contamination associated with vehicle traffice areas can, in time, cause problems with groundwater quality; water supply wells should ideally be located at some distance from, or upgradient of, vehicle traffic, parking and maintenance areas, or otherwise protected from contamination related to these potential sources.

SECTION 4

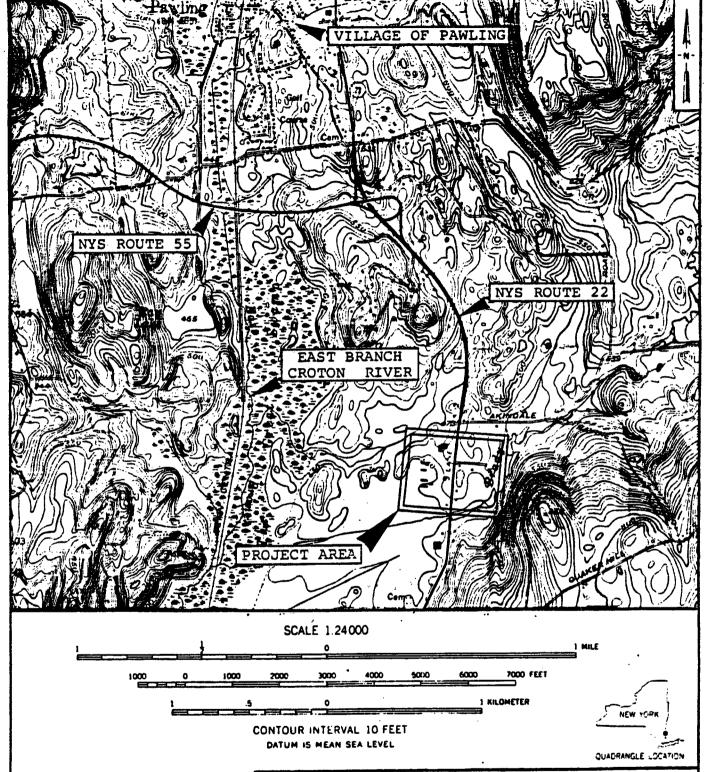
CONCLUSIONS AND RECOMMENDATIONS

- 4.1 CONCLUSIONS
- 4.1.1 The local aquifer is comprised of hydraulically connected unconsolidated granular deposits and carbonate bedrock.
- 4.1.2 Hydrocarbon contamination of groundwater in the project area has been documented, independently of the local supply well system, by this hydrogeologic study.
- 4.1.3 The major source of hydrocarbon contamination encountered in this study is indicated to be the Amoco station in the project area.
- 4.1.4 Pumping of deep water supply wells in the area enhances the potential for contamination of the aquifer over a wide depth interval.
- 4.1.5 Determination of the full vertical extent of hydrocarbon contamination of the aquifer in the project area is beyond the scope of the existing monitoring well network and this phase of study.
- 4.1.6 The lower contaminant concentrations noted in several supply wells and monitors may represent the margins of the contaminant plume or may be related to activities in the vicinity of these wells.
- 4.1.7 Initial indications are that the contaminant plume may disperse in a relatively short period if both contaminant input at its source(s) and residual contamination are eliminated.

4.2 RECOMMENDATIONS

- 4.2.1 Inspection of operations and facilities at the Amoco station should be undertaken and remedial measures completed as warranted to remove sources of contamination at that facility. Potential sources of residual contamination should also be remediated as discussed previously.
- 4.2.2 Ongoing assessment of groundwater quality in supply wells and monitors through same-day sampling at all data points is recommended to evaluate the rate of migration of the plume downgradient of the indicated source, and to investigate whether hydrocarbon contamination found at a distance downgradient of the indicated source is the result of contaminant plume migration or localized hydrocarbon contamination.
- 4.2.3 Remediation of local groundwater contamination and provision of replacement water supplies to affected parties must involve coordinated removal of contaminant sources and temporary abandonment of affected supply wells. As a minimum, the Surplus Store and Corral Ford supply wells should be temporarily abandoned to eliminate possible ongoing verticle migration of contaminants, resulting from use of these wells, into the deep bedrock aquifer.
- A survey of supply wells in the project area should be con-4.2.4 sidered mandatory in providing data critical to project Well depths, static water levels, resolution. levels, pump/intake elevations and cased versus open hole intervals are among the data necessary for both the assessand extent of local groundwater nature the contamination and generation of design details required replacement supply wells.

- 4.2.5 Installation of replacement supply wells should be held in abeyance until additional data on site hydrogeology and existing wells is obtained. Data presently available in these regards is insufficient for consideration of new supply well locations and installation details.
- 4.2.6 Additional work to define the vertical extent of hydrocarbon contamination in the aquifer may be warranted to target suitable intake zones for replacement supply wells, and to provide data for design of such wells. This work may include conversion of existing deep supply wells to multiple-level sampling points and/or installation of purpose-built instrumentation for that purpose.
- 4.2.7 A deep groundwater monitor, of suitable design, should be installed between the Amoco station and Burger King. Routine assessment of groundwater quality utilizing this monitor would facilitate early detection of any contaminant migration which may occur toward the Burger King supply well.
- 4.2.8 The enclosure for the supply well for Marios Pizza should be shielded against direct entry of surface runoff from the surrounding parking area and the engine wash area at Maxwell Engine Rebuilders.
- 4.2.9 In addition to all monitors installed for this investigation, any abandoned water supply wells in which groundwater contamination is not observed to abate through time should be grouted upon project closure.


REFERENCES

- American Institute of Professional Geologists, 1977. Geologic Logging and Sampling of Rock Core for Engineering Purposes (Tentative Guide).
- American Society for Testing and Materials, 1983a. Penetration Test and Split-Barrel Sampling of Soils. Designation D-1586.
- American Society for Testing and Materials, 1983b. Diamond Core Drilling for Site Investigation. Designation D-2113.
- Balk, R., 1936. Structural and Petrologic Studies in Dutchess County, New York. Part I. Geologic Structure of Sedimentary Rocks. Bulletin of the Geological Society of America, v. 47, pp. 685-774.
- Bouwer, H. and Rice, R. C., 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. Water Resources Research, v. 12, no. 3, pp. 423-427.
- Empire Soils Investigations, Inc., 1983a. Preliminary Hydrogeologic Evaluations, Oil Spill, Village of Pawling, Dutchess County, New York. File No. GTA-82-17J.
- Empire Soils Investigations, Inc., 1983b. Interim Report, Oil Spill, Village of Pawling, Dutchess County, New York. File No. GTA-82-17J.
- New York State Museum and Science Service, 1962. The Geology of New York State. Map and Chart Series No. 5 (Text).
- New York State Museum and Science Service, 1970. Geologic Map of New York. Map and Chart Series No. 15 (Lower Hudson Sheet).
- Rose, H. Glen and Smith, H. F., 1957. A Method for Determining Permeability and Specific Capacity from Effective Grain Size. State of Illinois, Department of Registration and Education, State Water Survey Division. Circular No. 59.
- Schaff, J., Assistant Regional Oil Spill Engineer, New York State Department of Transportation Region 8, 1982. Personal Communication.
- Simmons, E. T.; Grossman, I. G. and Heath, R. C., 1961. Ground Water Resources of Dutchess County, New York. State of New York Department of Conservation, Water Resources Commission. Bulletin GW-43.

- Thompson, J. H., 1966. Geography of New York State. Syracuse University Press.
- United States Department of Agriculture, 1955. Soil Survey of Dutchess County, New York.
- United States Department of the Interior, Bureau of Reclamation, 1977. Design of Small Dams.
- United States Geological Survey, 1958. Pawling, New York/ Connecticut 7.5 Minute Topographic Quadrangle. Photorevised 1971.

APPENDIX A

Drawings

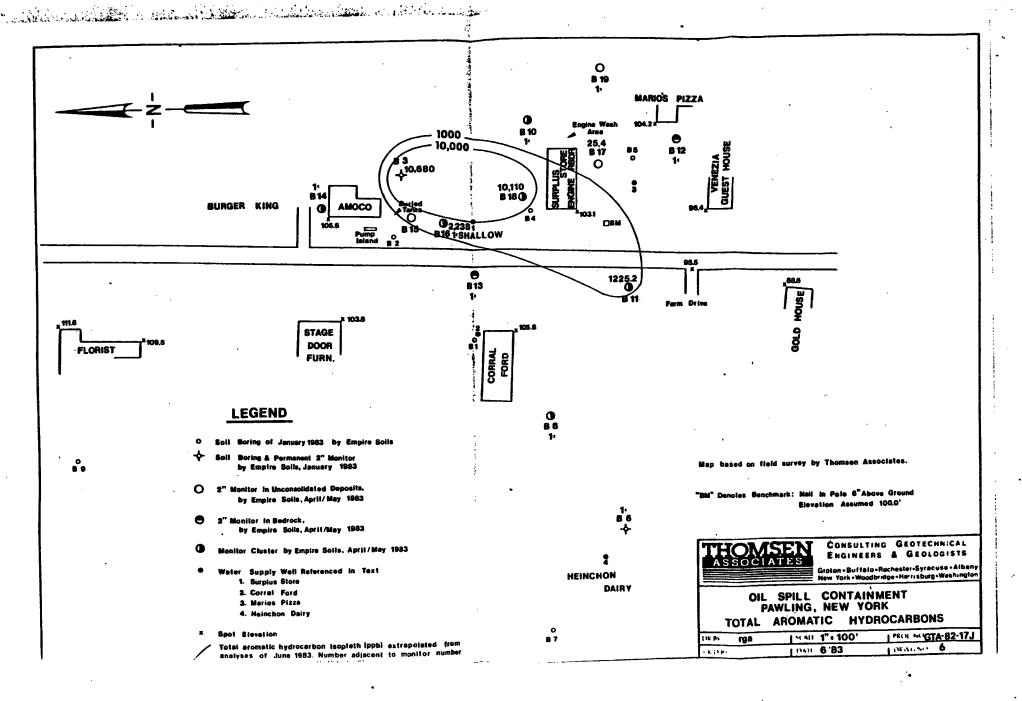
DETAIL FROM:

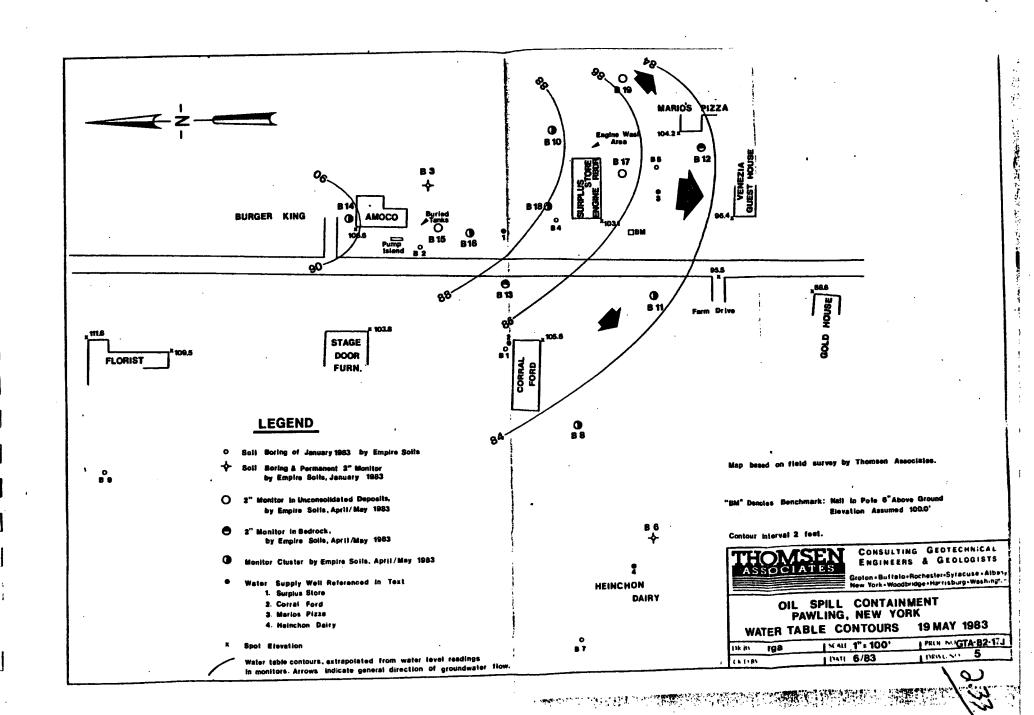
PAWLING, N. Y. -CONN.

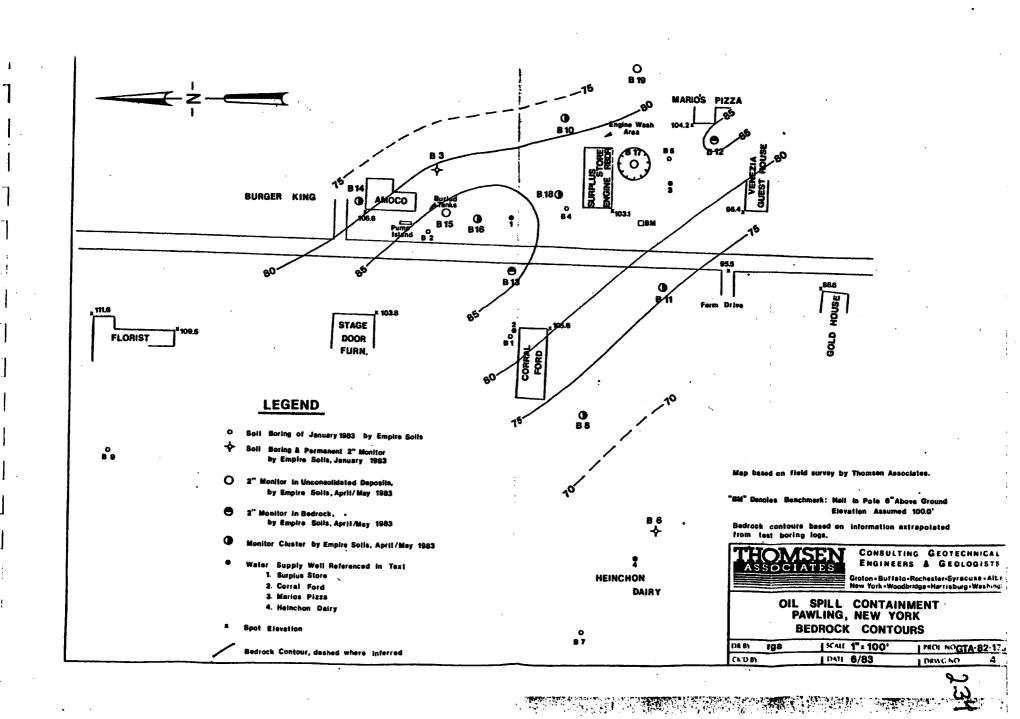
N4130-W7330/7.5

1958 PHOTOREVISED 1971 AMS 6267 II SE-SERIES 821

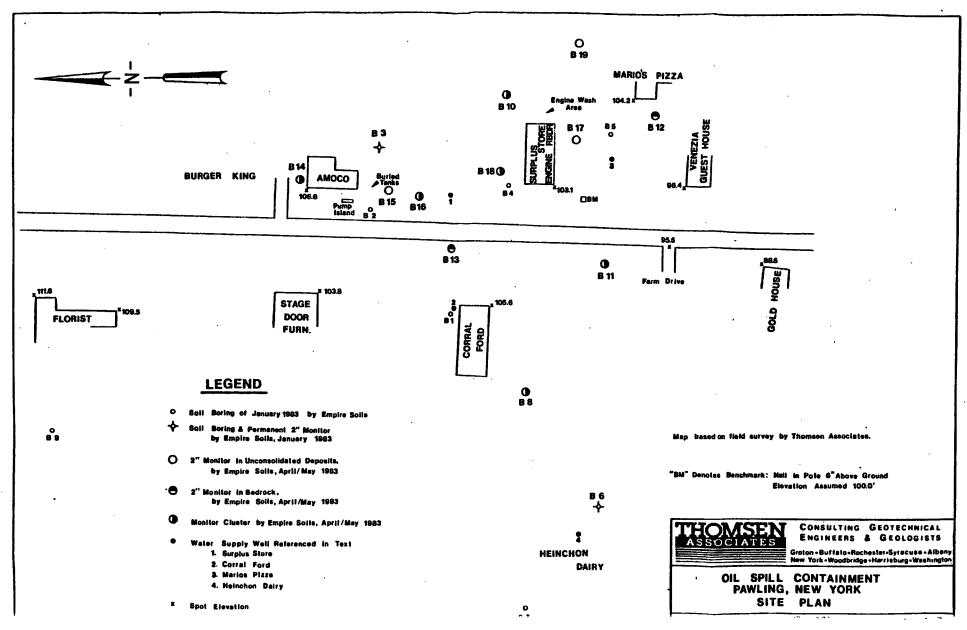
THOMSEN ASSOCIATES

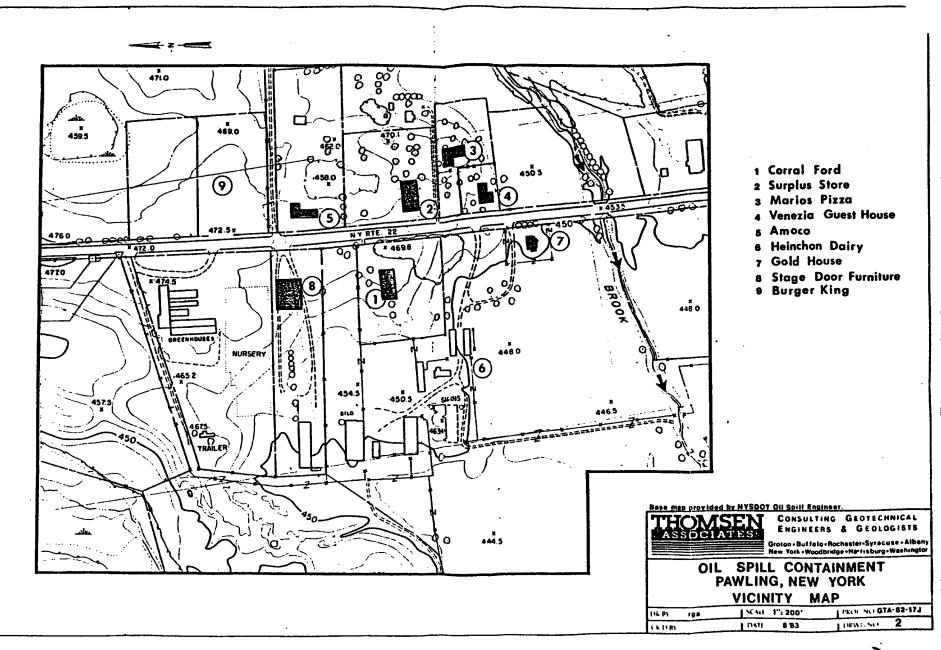

CONSULTING GEOTECHNICAL ENGINEERS & GEOLOGISTS


Groton - Buffalo - Rochester - Syracuse - Albany New York - Woodbridge - Harrisburg - Washington


OIL SPILL CONTAINMENT - PAWLING, N.Y.

SITE LOCATION MAP


DR BY:	SCALE.	as shown	PROI NOGTA	4-82-17J
CK'D BY.	DATE	1-83	DRWG NO	1



APPENDIX B

Subsurface & Hydrogeologic Logs

	š	₁₀	<u> </u>	È -2	\neg		۳.	: -	I TE	PERME ABILITY								READ	PROBE		NOTES
ОЕРТН	ELEVATION	SAMPLES	CHEN. SI	Inche	2	SOIL of ROCK CLASSIFICATION	UNIFIE SOIL CLASS	DENS	WATE CONT	(cm/sec	B-8R		8-85				emp.	Cond.	Eh ImVl	PH	NOTES
-		S S	8 5	æ			3.00				-										Core drilled 26.2'-36.2'. Recovery 9.4' (944) NX double
5 -	93.3					SURFICIAL FILL 0.0' Stratified brown fine to coarse SAND and fine to coarse GRAVEL, trace to little silt, cobbles	SM, GM			-											tube, 10' barrel. Tricone roller bit to 36.2'. Left 0.5' core stump in hole. Water level at completion of B-8R 8.2' below grade.
-10 - - -15 - -						Grading wet at 12'							TOMBO								Monitor B-8R: Bottom of 2" PVC well at 36.2'. Screen 36.2'- 26.2' (0.010" slot). Bentonite 25.2'-25.5'. Native backfill 25.5' to surface. Curb box at surface. Monitor B-8S: Bottom of 2" PVC well at 15.0'.
- 20 - - - - 25 -	67.8					25.5 Light gray, medium grained, dolumitic MARBLE. Thick bedded, very slightly															10.0' (0.020" slot). Native backfill 15.0' to surface. Curb box at surface.
- 30 - - - - 35					94	weathered, hard, with pronounced banding. Solution zone 26.8'-26.9': tight, parallel, stained, slicken- sided(?) 45° fractures @ 1/2" spacing with secondary carbonate film.				k= 2 x 10 ⁻³ cm/sec											
- 40 -	57.1				-	BORING TERMINATED @ 36.2'															80 60
NOT		1				Surface Elevation 93.3 Date Started 4-29-83			ci No.	. Oil Spi	11 Conta	Inme	nt_	<u></u>		<u></u>					DGEOLOGIC LOG
for t	everse sidely and institute to the second se	- 1	RUN NO.	RECOVERY (Percent)	808	Date Started 4-23-03 Date Completed 5-2-83 Number of installations in Boring 2 Method of installation Hollow Stem Augrand Flush Joint Casing	ers	Local	100	Pawling y rga	, New Yo	rk heck							ASSI	CI	MONITOR NO. B-8 Sheet 1 of 1

	8	ES.	Š	VERY 1881			0 K	<u> </u>	E MT	PERMEABILITY				IEZOM ON DE		WATER RE.	PROBE		
DEPTH	ELEVATI	SAMPLE	SAMPLE	RECO.	z	SOIL OF ROCK CLASSIFICATION	UNIFIED SOIL CLASSIF,	DENS	WATER CONTENT	icm/seci	B-1	OR	B-1	os .	Temp.	Cond		рН	NOTES
1 1 1	101.1	1 1 1				SURFICIAL PILL 0.0				1	Ė					!			-
0-	101.1		1 2		16 14	Stratified brown fine to coarse SAND and fine to coarse GRAVEL, trace to little silt, cobbles	SN,GM			-			1						Core drilled 25.0'-35.0' Recovery 9.8' (98%) NX tube, - 10' barrel
5-			3	ŧ	10	·				-	<u>- </u>								Water level at completion of B-10R 11.3' below grade. Honitor B-10R: Bottom of 2" PVC-
10-		/	5		21					k= 3 x 10 ⁻⁴⁻ cm/sec									well at 35.0°. Screen 35.0°- 25.0° (0.020° slot). Bentonite — 25.0°-24.5°. Native backfill — 24.5° to surface. Protective —
-15-		4	7		5	Grading wet at 14'				- CIM/ Bec	111		11111111						pipe at surface. PVC extends - 2.6' above grade Honitor B-10s: Bottom of 2" PVC -
20 -		<u>/</u>	9 10		26 31					1.1.1									well at 17.0'. Screen 17.0' 15.0' (0.020" slot). Native - backfill 17.0' to surface Protective pipe at surface.
-	76.6					24.5'			*. *	1						•			PVC extends 2.6' above grade.
25	_73.1					Light gray to white, medium grained dolomitic MARBLE. Thin to medium bedded, moderately weathered, with numerous tight & open 40°-50° stain-ad fractures and irregular solution.													Lost drilling water at 28.6'.
30 -						cavities. Fractures exhibit secon-/ dary, slickensided(?) carbonate films. 28'±/ Gray dolomitic MARBLE. Thick bedded,	:			. .	1 - 1 -								
35	66,1	·	1	98	98	slightly weathered, with several tight slickensided 50° fractures. Frac- tures stained & discoloration ex- tends into rock up to several inches.	· · · · · ·			-	- <u> </u> - -								<u> </u>
-						BORING TERMINATED @ 35.0'				- -	<u> </u> - -	•					-		1
NOT		Ц		F		S		Bro'ss	Mo	GTA-82-17J	F						HADE		EOLOGIC LOG
See for I	everse sid ey and enstion to	10	RUN NO.	RECOVERY [Percent]	. ROD	Surface Elevation 101.1 Date Started 5-5-83 Date Completed 5-9-83 Number of Installations in Boring 2 Method of Installation Hollow Stem Auger and Flush Joint Casing		Projec Locatio	on	Oil Spi Pawling rga	, New					T			

	-	5	83	ò	MPL			٥	<u>u</u> .	È :-	N. F. T.	PERMEABILITY			OR/PI			WATER REA	PRO DINGS	BE	NOTES
DEPTH		ELEVATION	SAMPLE	SAMPLE	TEM S	lineh	z	SOIL OF ROCK CLASSIFICATION	SOIL CLASSIF.	PCF	NATE CONTE	tem/seci	B-1	1R	B-11	8	 Tems	Cond	E (
-15	79					94	83	SURFICIAL FILL 0.0' Brown SAND & GRAVEL, Some Silt, cobbles, boulders Wet @ 13' Glacial till or severely weathered bedrock (difficult drilling) 21.7' Light brown to white, medium grained dolomitic MARBLE. Thin to medium bedded, very slightly weathered, hard. Fractures generally horizontal, tight and fresh or very slightly stained. 0.3' void or seam at 23'±. BORING TERMINATED @ 31.7'	8 5	30	24 25 25 25 25 25 25 25 25 25 25 25 25 25				- himminimum		110		mi (m	VI	Core drilled 21.7'-31.7'. Run 1: 21.7'-26.7' Recovery 4.7' (944) Run 2: 26.7'-31.7' Recovery 4.8' (964) NX double tube, 10' barrel. Water level at completion of B-11R 12.5' below grade. Monitor B-11R: Bottom of 2" PVC- well at 31.7'. Screen 31.7'- 21.7' (0.010" slot). Bentonite 21.7'-21.2'. Native backfill 21.2' to surface. Curb box at surface. Monitor B-11S: Bottom of 2" PVC- well at 14.0'. Screen 14.0'- 4.0' (0.020" slot). Native backfill 14.0' to surface. Curb box at surface.
NOTE See re for he explai	evers by an	đ	•	RUN NO.	> asacco	Percent	QOE	Surface Elevation 97.3 Date Started 4-27 and 5-10-83 Date Completed 4-27 and 5-10-83 Number of installations in Boring 2 Method of installation Hollow Stem Augers and Flush Joint Casing		rojeci	l No	GTA-82-17 Oil Sp Pawlin	ill Co g. New	York							OGEOLOGIC LOG SEN MONITOR NO. B-11 Sheet 1 of 1

	Г	8	"	ġ	<u>₹</u> }		\neg		a ±	≵	, E 2	PERMEABILITY		MONIT				1	WATE	PROBI		MOTES
Į		ELEVATION	SAMPLES	SAMPLE	RECOVE		=	SOIL OF ROCK CLASSIFICATION	UNIFIED SOIL CLASSIF.	FNSI	Pare	icm/seci	B-1	2R				Tem			pH	
E		ELE	SAB	SAR	뷠	=			5 % 5	8 -	¥ 0-						$-\Gamma$	1.0	1 lhuno	m lmV	+-	
<u> </u>			T			7	=		1		4	-	Ł		. 1		l		1	ŀ		1
.	1		l ŀ		H	╅		·		l	4	-	F	i 1			- 1			i		1 -
1	1		lt			士		SUPPLICIAL PILL. 0.0'	1		4	-	┡	1 1		l	Ţ		1	1	ŀ	
	10	1.1	Ц	_	+	4		SURE ICERES 1 200	 		 			1				+-	1			Core drilled 16.6'-26.6'.
j .	-		lł		├ ┼╴	+		Stratified brown fine to coarse GRAVEL & SAND, little to Some Silt.				1 -				i	ı			1	1	Recovery 5.8' (58%) NX double
1	1		lt			1		cobbles	ļ	l		-	-						1	ı	1	tube, 10' barrel.
]		H		╙	-			1	ļ	1	1 _				1		1	1	1	ł	Monitor B-12R: Bottom of 2" PVC
- 5-	┨		lŀ		H	╅			1	į.	Į .	1 -					I	1.	1			well at 23.3'. Screen 23.3'-
	1		lt		上				1	İ	١.	-	(}				l		1			16.3' (0.010" slot). Bentonite "
l l]		H		╙	4			1	1	1	1 :		1 1	1			ì	1	- 1		16.3'-16.0'. Native backfill 16.0' to surface. Curb box
1	┨		1 1		H	\dashv				İ	1	1 -	FII			(I			1	1	1	at surface.
10.	1		1 1		П				ı	Į.	'	-	$H \parallel$					1	1	1	1]
1	1		П		П	\dashv			1		;	1 -	比川						1	ı		1 -
1	4		Н		╂╂	╅			1			1	15 I					Ĭ	1	1	1	No water in borehole prior to -
١	┨		П		H	1			1	1		l –	∦ -		i	H					1	introduction of drilling water. — Lost drilling water at 19.4', —
-15	יַב	85.2	Ц		П.	\Box		15.9	_	┼	╁──	 	100.0	7						-		regained at 24.4'. Water at
1	4			<u> </u>	H	-		Gray, banded dolomitic MARBLE. Thick		1	1	k= -2 -	IE			1		1		:	ł	completion of B-12R 14.5' below -
1	-1			\vdash	++	+		bedded, very slightly weathered, hard		1		1 x 10 ⁻²	∦- : 	1	l	ı		1	1	1		grade; water level 1 hour after - completion 14.5' below grade
20	1.	<u>81_7_</u>		Ш	П	\Box		~		Ι-	†	1 -	什目	İ	l		1	ı	1	1	1 .	At completion of coring and
[~	4			_	₩	-		Gray to white dolomitic MARBLE, inter	1			١.	1E EI	İ	l		1	- 1	1	1		prior to setting monitor, bore-
1	-			-	H	\dashv		bedded with harder banded marble. Moderately to severely weathered, wit	4	1			1 - 1		•	1	1	1	1	1	1	hole filled with sand to 23.3' Following monitor installation, -
	1					\Box		numerous stained fractures. Voids or			l		╫╴╴		1		1		İ		1	pumped from well at 3gpm for
25	1			Ш	\mathbf{H}	58	41	seams: 19.4'-19.6'; 19.7'-19.9';	1	1			1	1	l				1	ı		10 mins. with no drawdown
	4	74.5		-	╂╂	-		21.8'- 22.0'; 23.6'-24.3'; 24.4'-24.9 Loosely cemented and friable below	<u>'</u> ——	╂	╂		╂	+	 	├-			+		+	
1	1		T						11	Ì	1	i .	╂	1 .		l	1	- 1			- 1	
1	1		1		Π			26.6'	1.1	l	1	<u> </u>	止	İ	ĺ		1	1	1	- 1	1	-
30	4		1	⊢	╂╂			BORING TERMINATED @ 26.6'	ļ.	1	1	- 1	1 F	1	1		1 1		ı		-	- I
	4		١	-	11				1	1		1 .	╬		i		1 1				1]
1	1		1		П							1	1 ·	1		1			1	1	1	1
ł	4		1	 	╁╂				1	1	1	1 -	1		1	1				1 .	- [-
- 35	4		1	\vdash	††			1		1	1		╂	1	1				1	-		
-	1		ı		\Box				[1	ļ		╂		1		1		1	- 1	1]
1	4		ı	\vdash	₩			1		1	1	1	1	1		1			-	1		4
1	+		1		11			1 ·	1	1	1		╬			1		1		1		1
1]		1	匚	П			1		1	1		╂	1	1	1			1		-	
1	4		ı	-	╂╂			1			1		1		1			1		-	1	.
	4		ı	-	╅╅		L]	1		1		╬		1		1		ļ		-	
	ユ				\sqcup				1		سيل	GTA-82-1	<u> </u>		-				T	HYI	ORO	GEOLOGIC LOG
	TE:				\prod			Surface Elevation 101.1			ct No.	Oil S	ill Co	ntainm	ent			_	 -			
		verse t	ide	9		= =		Date Started	l		ion —	Pawlir	g, New	York				_		HO	M	SEN MONITOR NO. B-12
	-	y and ation (to			2 5	8	1 No har address that inno in Rosino 4		-		By rga		Checke	d			_		ASSC		Sheet 1 of 1
	8		. •	3		RECOVERY Percent	_	Method of installation Hollow Stem Auge and Flush Joint Casing	IS.	Glass	Hiten ,		·········						┸┋			Sheet_101_1
-				1	1 1	-		and trush dorne casting														

and the second of the second of the second of the second of the second of the second of the second of the second of

MONITOR PIEZOMETER WATER PROBE CONSTRUCTION DETAILS READINGS PERMEABILITY UNIFIED SOIL CLASSIF DENSITY IPCFI WATER CONTEN NOTES SOIL OF ROCK CLASSIFICATION icm/seci B-13R Cond. I-C I (hunolem) lmVI SURPICIAL PILL 104. Stratified brown fine to coarse SAND Core drilled 16.4'-26.4'. and fine to medium GRAVEL, Some Silt Recovery 9.9' (99%) NX double tube, 10' barrel. Monitor B-13R: Bottom of 2" PVC well at 26.4'. Screen 26.4'-16.4' (0.010" slot). Bentonite 16.4'-16.0'. Native backfill 16.0' to surface. Curb box at surface. 10 91.4 Glacial till or weathered bedrock. No water in borehole prior to introduction of drilling water. 88.4 Water level 10.5' at completica Gray, medium grained dolomitic MARBLE of hole 1030 hrs 5/3/83. Set 2" Thick bedded, very slightly weathered, monitor and pumped well dry. with pronounced banding. Solution Water level in well 12.5' zone(?) 17.7'-17.8'. Grading at 20' 1430 hrs 5/3/83. to white, loosely cemented, moderately 82.4 weathered, friable marble with vertical stained fractures. Severely weathered soft zone 21'-22'(±)22.0' Gray banded MARBLE, very slightly 78.0 weathered with occasional very gen-tle stained fractures. BORING TERMINATED @ 26.4' . 30 Project No. GTA-82-17J **HYDROGEOLOGIC** LOG NOTE: Surface Elevation_ Project Title ___ Oil Spill Containment Date Started 5-2-83 See reverse side MONITOR NO. Pawling, New York Date Completed 5-3-83 Location --for key and 800 B - 13 ASSOCIATES Number of Installations in Boring_ explanation to Method of installation Hollow Stem Augers rga Checked_ Sheet 1 of 1 log. and Flush Joint Casing

See March and Marth artifice March and the state of the state difference of the state of the sta

かが

READINGS ERME ABILITY CONSTRUCTION DETAILS NOTES SOIL OF ROCK CLASSIFICATION B-14R B-14S Cond. tema. I.C. Ibanoca [mV] SURPICIAL FILL 0.0 106.3 Core drilled 29.9'-39.9'. Stratified brown fine to coarse SAND Recovery 6.7' (67%) NX double fine to coarse GRAVEL, little to Some tube, 10' barrel. Silt, cobbles Monitor B-14R: Bottom of 2" PV well at 35.5'. Screen 35.5'-30.5' (0.010" slot). Bentonite 30.5'-29.4'. Native backfill 29.4' to surface. Curb box at surface. - 10 -Monitor B-14S: Bottom of 2" PVC well at 25.0'. Screen 25.0'-10.0" (0.010" slot). Native backfil: 25.0' to surface. Curb box at Grading wet at 15' surface. - 20 76.9 . 30 White dolomitic MARBLE. Moderately to severely weathered and friable with stained fractures. Occasional gray, very slightly weathered, banded interbeds. Void or seam 30.3'-31.3' 35'± Lost drilling water at 34.6'. _71.3 _ 35 -Gray dolomitic MARBLE. Thick bedded, very slightly weathered, with pronounced banding. Stained, soft solution zone 35.5'-35.7'. BORING TERMINATED @ 39.9' HYDROGEOLOGIC LOG Project No. __GTA-82-17J Surface Elevation 106.3 NOTE: Project Title Oil Spill Containment Date Started 5-11-83 MONITOR NO. See reverse side Pawling, New York Date Completed 5-11-83 Location for key and B-14 Number of Installations in Boring_ explanation to Method of installation Hollow Stem Augers _ Checked. Classified By. Sheet 1 of) log. and Flush Joint Casing

	z		ġ	a :	:_1			أير	<u> 1</u>	Zi	PERMEABILITY	l c	DNSTRUC	ION DET	AILS	l	HEAD	NUS		1	HOTES
_	ELEVATION	SAMPLES	mi	CHEM. SMI	Ī	_	SOIL OF ROCK CLASSIFICATION	SOIL	5 5	ATE PTO	tcm/sec1	B-15	s			Temp	Cond.	En	рĦ	ŀ	
E PTE	2	1	<u>₹</u>		3 🛓	•	12	582	- B	¥ 0.4		 				1.01	(pano-cm)	ImVI			
5	<u> </u>	3	3	히	_														1		
_			_	╁╁	-						1 -	-		1	1	1	l	1	1	l	
┪			_	H	\neg						-	-	1	1 1		ŀ		1	1	ļ	
1				П			0.01					_				<u> </u>		 	 		S: Bottom of 2" PVC
,]	105.0	4	_	#							_	E 4			1	1	Į.	}		[_11 at 18 !	K'. SCreen 15.3'-
4		ı	⊢	H	-		FILL: Brown SAND & GRAVEL with mis- cellaneous materials		1	ŀ	-	H 11		1 1	- 1	l l	1	!		la si 10 010	* alot). Native
1		- [\Box			CALIFORN PROPERTY.		1	ŀ	-	 	1 1	l t		1		1	1	backfill to	surface. Curb box
1		- [L	H			· '			•	1 -		1 1	1 1	- 1	1	1	1	1	at surface.	
5 -		- H	⊢	₩					1	1	i -	 - 	1 1	1 1		1	1	1	1	1	
4		V	1	Ħ		10	8'±			l	-	{ - 		1 1		1	ì	1	1	1	
1	97.0	<u>1</u> 7		П			l		 	\vdash	1	IL H	1 1	1 1		1	1	1	1	1	
4		Υ.	2	+		29	Stratified brown SAND & GRAVEL, little		l		_	1-8	1 1	1 1		1	1	1	1		
ᅥ		V	├ ӡ	11		17	silt, cobbles (Moist-Firm)		Į .	Į		 - - -	1 1			1	1	i	1	ł	
		- 17		口			(10200		1	1		化目	1 1		1	1	1	1	ł	1	
7		Ι.	4	₩		10	1		1	1		IL E	1 1			1	1	1	1	Hydrocarbo	odor noted in
4		- 1/	ا ج	+1		17	Grading wet at 14'				1 -	11-13	1 1			1	1	1	1	samples 5	. 6.
5 🕇		. 17		П			i i		1		1 .	# 13	1 1	1		1	1		1	ı	
1		Ľ	<u> </u>	\Box		32			i	1		工目	1 1			1.	1	. l			
-	86.	5	┢	Н		-	19.5'		┼	╁──	 	4	+			1				1	
_ +				Ш			BORING TERMINATED @ 18.5'		l l	ì		╢╴	1 1		1 1	1	1	1	-	ł	
<u>"</u>	1	1		П			Refusal - Possible bedrock or		1	1	1	1 L	1 1	1	1 1	1	1			Į.	
4	l		\vdash	Н		 	boulder			1	1	4	1 1	l	1 1	1	ı	i			
-	1		H	11			1		1	1	1	- -	1 1	ļ	1		1	1		1 .	
	1			П]		1			<u> </u>	1 1	1		1	- [1	1		
7	1	- 1	<u> </u>	+		├—	1		1	1		T F	1 1	- 1	1 1	ı	1	1	ì		
-	ł	1	\vdash	+		 	1		1	1	ı	-∦-	1 1	- 1	1 1	- 1	l	1		İ	
-	1	- 1]			İ	1	北	1 1		1 1	i	1	1		1	
_	1	ı		4	-	├—	4			1]	1 1	1	1 1	1		i		l l	
-	ł	- 1.	\vdash	╁	<u> </u>	\vdash	1		1	1	ł	╬	1 1	ļ	1	- 1			1	1	
-	1	ļ		I			1	ŀ	1	1	j	#	1 1	1	1 1	- [1	- 1		
-	1	- 1		Ţ		<u> </u>	-l		1	1	1	⊒ ⊑	1 1		1 1	- 1	į.	1	1		
_	ł	- 1	\vdash	╫		一	- I		1	i		-∦-	1 1	1	1 1	1	1	- [1	ż
-	1	1		土			3				1	1	1 1	ļ		- [1	1	- 1	1	$\mathcal{L}_{\mathcal{L}}$
	1			\Box		₩	4		1	ı	1	1	1 1]		- 1	1.	1	- [77
-	4	1	\vdash		┝╌	┼─	-]	1		,	┵	1 1	Ì	1 1	ł	1	1	- 1	ł	
-	1	1	\vdash	┪]	1		1	1	╬	1 1		1 1	- 1		1			7
•	1	1		1		lacksquare		l	1	1		北	1 1	1		ı	1		- 1	1	
	-	ı	\vdash	+	-	┼	-		1			#	1 1	- 1	1 1		İ	- 1	L		
	-{	- 1	\vdash	╁		╫┈	·	<u> </u>					لمبل				1	нү	DRO	GEOLOGI	C LOG
NOT	 F:		十	十	1	1	Surface Elevation 105.0 Date Started 5-4-83		Proje	ct No.	GTA-82-	oill Co	ntainmen	t		_	-				MONITOR NO.
	revers.	e side	.	اہ	 ≥ =		Date Started 5-4-83	İ		ct Tit	Pawli	ng. Nev	York			-	1	HC	\mathbf{M}	SEN ATES	B - 15
	key an	d	1	ହ	RECOVERY	000	Date Completed 5-4-83 Number of Installations in Boring 1									<u>-</u> .		ASS	o C I	ATES	Sheet 1 of 1
		- 1-	- 1	- I	10	ıĕ	Method of Installation Hollow Stem Auger		Clear	itied	By rga_		Checked.				1 🖺				SheetO'
expl	anatio	11 10	1	2	U	1	Method of Installation notion stem number and Flush Joint Casing		U		-,						=				

.

		_					,				п -										
1	ĕ	S.	ğ	È.,			UNIFIED SOIL CLASSIF.	<u>-</u> ج	Fi	PERMEABILITY	l		NITOR.					WATER	PROBE		
3	ELEVATIO	SAMPLE	ا ج	3 6	2	SOIL OF ROCK CLASSIFICATION	15 Z	SIT	E E	Icm/sec)	<u>⊩</u>				DEIA	1.8	- 		DINGS		NOTES
DEPTH	9	3	SAMPLE	= يوا			1 0 0 N	₩ -	₹84		⊪ -	-16R	B-	165	4-		Tem		En	pН	1
-		7	<u> </u>	} -	 		+	⊢	 -		#-		- -		┿		1 1.C	(husea	imvi		}
1 -		l					1		į	_	止」	_		_	ı		1		1	1	<u>.</u> -
							1 .		1		IL F	71		T	1	ı	1	4	i	1	1 -
-	100.8	-		╄		SURPICIAL FILL 0.0'	1			-	╬					.	1		1	i i	Ī
10-	100.8	\dashv	-+	╁			 	-	-		Ы		- 61	 	+-		┿		╂	├ ─	
-		lt		1		Stratified brown fine to coarse SAND and fine to medium GRAVEL, trace to	SM, GM	1	i				HL	n		- 1	1		I		Core drilled 22.0'-32.0'.
1]				1		little silt, cobbles	,	l		_	11	11	1 6		1	- 1	1	1 '	1		Recovery 8.2' (824) NX double - tube, 10' barrel
-	1	┞	\dashv	╂		(Damp-Firm)	1	1	1	-	╟║	Π	1 6		1	-	ı	· •	1	l	Eube, 10 Datter.
5 -		╁	\dashv	+-			1				╬┤		1			1			1		Water level at completion of
1 :		Ζİ	立		13.	1		1			IL I	11	18		1		1		f		B-16R 9.7' below grade.
]		/		1	L_			l	'	_	╟║			i I	1	1	1			1	Monitor B-16R: Bottom of 2" PVC-
-	91.1	4	-2	╂	18	9.7'		l		-	╂╏			1	1		1	1 .	1		well at 32.0'. Screen 32.0'-
10 -		/t	3	1	19	Grading wet at 10°				_								1	1	1	27.0' (0.010" slot). Bentonite -
		7	\Box					1	, ,	2 x 10 ⁻⁴ -	ΙĘΙ		E	1		-	1	1	1		24.5'-25.0'. Native backfill
-		4	4	↓	28_	Severely to completely weathered	1	ŀ		cm/sec -	-				1	1	!		ł		25.0' to surface. Protective -
	1		-+	╂─		bedrock and/or glacial till (?)		ŀ		-	╂╽				·	1			1		2.2' above grade.
15 -		lŀ	-+	+				1				11		1	ı		*	1	1		_
		ן ו				·		l		-	IL I	Н	با	4	ł	ļ	1 "	ł			Monitor B-16S: Bottom of 2" FVC - well at 16.5'. Screen 16.5'-
1 -		╏╏		↓					1	-	H	11		1	ł	ı	1	1 .	ł		2.0' (0.010" slot). Protective
1		lł	\dashv	╁─				•	- 1	-	!	H		1	1	1	İ	1	1		pipe at surface. FVC extends -
20 -	80.3	-1				20.5'						Ш	- 1	1	1	1	1	l	1		2.4' above grade.
		Ц	_	_		Severely weathered, fragmented fri- able white MARBLE (Boulders?)	1	l	- 5	_			İ	1	1		1	-	I]
			-+	╀		Sand seam 21.4'-22.0'			- 1	-	∦-l	11	- 1		1		1	1	1	1 1	3
	75.8		-	┼┈		25'		L	l l	-			1	1	1	1	ı	i	1		
25 -						Light gray dolomitic MARBLE. Thick		Γ			127	77	- 1		1	ł	1				At completion of core drilling borehole caved to 25'. Spun
1 -				↓		bedded, hard, very slightly weathered			į		╟┟	!	- 1	1	1	1		1			casing to 25.2', cleaned hole to
	l l		-	 		and well banded. Several very gentle tight fractures and steep (45° and		ļ	,	_	 - -		- 1		1	1	1	l	1		32' and installed B-16R.
30 -	1			+		60°), stained and weathered fractures.		l		_	LE	11	- 1	1	ł	1	1	Į .	1		-
130 -]						1	l		_	F		ı	1	1	-		1			
1 -	68.8		-1	82	68	32.0'						4		 	4-		┞—	<u> </u>			
-]	lŀ	\dashv	+-	 -	BORING TERMINATED 6 32.0'	1	l	;	-	I F.			1		1		1			·
35 -	1	Ιŧ	二]	1					- 1	1				ļ			·
["]		[\dashv	-			1	ĺ		_	⊩	-	-						1		
.	l	l ŀ		+-	-		1		:	-	╟		ı	1		.			1		
1]	<i> </i>				1	1		,	-	l						1	l			-1
1 2]	[\Box	\Box			ŧ I]			 -	-					Ī				
1 -				┼	<u> </u>	1		l		-	⊩		1	1	1	1	1				コ
1 .	1	lł		1-	 	1	Į l			-	L	ŀ	-	1			1	Ì	1 1		{
]	Įľ]	1	ļ			I				1		f				1
<u> </u>		Ц	\Box			ļ		L			<u>L</u>	L_		ــــــــــــــــــــــــــــــــــــــ			L.,		لــــــا		
NOT	_	1	- 1	1	1	Surface Elevation 100.8 Date Started 5-3-83	9	rojec	1 No	GTA-82-1		Cont	a inment				Ĺ		HYDR	OGI	EOLOGIC LOG
	reverse sid sey and	<u>ا</u> • ا	õ	ECOVERY [Percent]	_	Date Stacted 5-4-83		rojec .ocali	t Tille .	Pawli							Г	יוינ		LC.	EN MONITOR NO.
	ey and enstion to	١		2 2	ĕ	Number of Installations in Boring 2 Method of installation Hollow Stem Auger											- 1	1		1	B- 16
log.		١	NO.	<u>n</u>	-	Method of installation Hollow Stem Auger	<u>ca</u> c	Classi	ied By	rga		Chec	ked								Sheet 1 of 1
L				ļ"		and Flush Joint Casing															31101

in the contraction of the contra

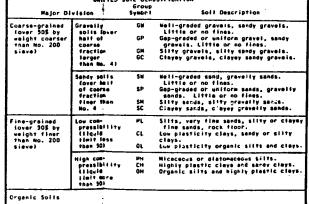
DEPTH	ELEVATION	SAMPLES	PLE NO.	M. SMPL.	2	SOIL OF ROCK CLASSIFICATION	UNIFIED SOIL CLASSIF.	SET	TENT	PERMEABILITY		MONI CONST	TOR F	HEZON ON DE	ETER TAILS	T	WA	TER READ	PROBE INGS			- <u></u> :	
<u> </u>	3		SAMPL	A CHE	<u> </u>		SOIL	74 - 15 -	TAN CON	(cm/sec)	B-1	75	ļ				mp. C	ond. mhoom	Eh	PH	1	NOTES	
0.	102.	.1				SURFICIAL FILL 0.0'			e P. 757° Mille Schape	-	111								lmVI				
- 5-	7 1 1 1					Stratified brown fine to coarse SAND and fine to coarse GRAVEL, little to Some Silt, cobbles			سد . نومها	11:::1	₩ 						1				IWELL At	B-17S: Bottom	10 61
- 10 -	68.1	1				19'\$			general Communication of the company of the communication of the communi	, , , , , ,											14.6' (0	.010" slot). ; .0'. Native b surface. Curi	Bentonite
-15 -						Nested boulders in overburden, or possible severely weathered, seamy bedrock.			Medifican, design conses.												Water le	vel 14.9' in mo on of installat	onitor at -
-25	79.1					BORING TERMINATED @ 23.0'		+	**************************************	-	-	\dashv	+	-	+-	-	-	+	_	\dashv			
-									And the second second	-	-												1
-									ender Gereinsen von .	1	•												1
									The second secon	#								•					41141
for ke	: everse sign ey and nation to	- 1	N NO.	RECOVERY (Percent)	R00	Surface Elevation 102.1 Date Started 5-11-83 Date Completed 5-12-83 Number of Installations in Boring 1	Pro	iect 1	1110	FA-82-17J Oil Spill (Pawling, No	ontain w York	ment			<u></u>	<u> </u>	T				OLOGIC	LOG MONITOR	
log.			NO.	Ā Ģ		Number of Installations in Boring 1 Method of installation Hollow Stem Augers and Plush Joint Casing	Cia	5311100	81-	rga	_ Chec	ked						(SS)	M.	Vit.		B- 17 Sheet 1_ot_1	I

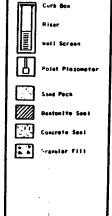
. . .

40

	10 10	ES	ON S	<u> </u>			e #	È	ENT	PERMEABILITY			OR/PIEZO UCTION (WATER REA	PROBE		NOTES
DEPTH	ELEVATIO	SAMPLES	SAMPLE CHEM S	RECOV Finch	2	SOIL of ROCK CLASSIFICATION	UNIFIED SOIL CLASSIF.	DENS	CONT	icm/seci	B-1	9R ⋅	B-188	Temp.	Cond.	Eh ImVi	рH	
	100.3					SURFICIAL FILL 0.0'				-								
5-	100.3					Stratified brown fine to coarse SAND and fine to coarse GRAVEL, little to Some Silt, cobbles				-			11111111					Core drilled 16.4'-26.4'. Recovery 5.5' (55%) NX double tube, 10' barrel. Monitor B-18R: Bottom of 2" PVC well at 21.1'. Screen 21.1'- 17.1' (0.020" slot). Bentonite 16.5'-15.9'. Native beacfill 15.9' to surface. Protective
-10-	83.9					Grading wet at 11'			\$ 5 minutes	k= 7 x 10-5 - cm/sec -	- - - - - - - - - - - - -							pipe at surface. PVC extends
20	_80.3 _					Light gray, banded dolomitic MARBLE. Thick bedded, very slightly weathered, hard. 20't White, friable, moderately to severely weathered and fractured dolomitic MARBLE. Voids or seams: 20.2'-21.9'; 22.5'-22.7'.		 			- 1111							pipe at surface. PVC extends 3.2' above grade. Lost drilling water at 20.1'. At completion of core drilling,—borehole caved to 20.4' and—water level 11.0' below grade. Water level in monitor 11.0' at—completion of installation. Pumped from well at 3gpm; for—
25-	73.9		1	55	42	26.4' BORING TERMINATED @ 26.4'	_				E			 		-	-	5 mins, with no drawdown.
- 30 -						100.3			•	GTA-82-171								
for	reverse sid key and anation to		RUN NO.	RECOVERY IPercenti	ROD	Surface Elevation 100.3 Date Started 5-5-83 Date Completed 5-5-83 Humber of installations in Boring 2 Method of installation Hollow Stem Auger and Flush Joint Casing	_	Projec Locali	1 Tille	GTA-82-17J Oil Spi Pawling	New Y	ork			T.	ION See		EOLOGIC LOG MONITOR NO. B-18 Sheel 1 ol 1.

The second of th


Γ	Т	8	S.	ě	<u> </u>				a .	<u> </u>	L Su .	PERMEABILITY			OR PI			,	NATER REAS	PROBE		NOTES
HEAD		ELEVATIO	SAMPLES	SAMPLE	CHEM SN	- Luch	-	SOIL OF ROCK CLASSIFICATION	UNIFIED SOIL CLASSIF.	DENSI	WATE CONT	(cm/sec)	B-1	98				Temp.	Cond.	Eh ImVi	рН	WOIES .
F	士		T	8	=	#						-		·					10			-
١,	1	100.8			1			0.01				+	EIIL						i			-
[]	1		П					Stratified brown fine to coarse SAND and fine to coarse GRAVEL, Some Silt,				-	(2) 12 - -									3
ļ.	.]							cobbles					-11									Monitor B-19S: Bottom of 2" FVC_well at 19.0'. Screen 19.0' 9.0' (0.020" slot). Native
	1											-										backfill 19.0' to surface. Protective pipe at surface. PVC_extends 2.7' above grade.
10	,-			_	H							-	EB									
	1				H						:	_	E						1			Water level 9.5' in monitor at
11	; 							Grading wet at 15'														completion of installation.
20	,‡	81.8	\mathbb{H}					19.0'	├─	╁	1		-				 	-	-	ļ	\vdash	
								BORING TERMINATED @ 19.0'			; i]
-2	5-											-	F									1
	1												‡ .									=
}	=											-	F									
	}												ŧ						,			
]												ŧ]
-	4											_	F			۱ ،			,]
	}			E		_							#									1
-	OTE:		1.	\vdash	H		-	Surface Elevation 100.8 Date Started 5-9-83	-	Proje	ci No	GTA-82-17. Oil Sp.	ill Con	tainme	ent							EOLOGIC LOG
	or ke	verse s y and nation t		BUN NO.		Oste Completed 5-9-83 Oste Completed 5-9-83 Number of Installations in Boring 1 Method of Installations in Hollow Stem August and Flush Joint Casing			Locat	101		New_	York hecked			 <u> </u>		I		45	MONITOR NO. B-19 Sheet 1 of 1	


DIPTH ELEVATION SAWPLES	SAMPLE NO CHEM, SWPL RECOVERY	SOIL or ROCK CLASSIFICATION	38 F.	DENSITY (PCF)	WATER CONTENT (Percent)	PERMEABIL (cm/sec)	my	MONITOR					WATER READ	PROBE		NOTES	
SAN ELE	CHEN	SOIL OF NOCK CLASSIFICATION	3	82	30	\$ 0 d	(CHIVES)				\vdash			Cond.	Eh (mV)	p#	
	4 5 6 7	•		9	10	11	12	#"	14				15	16	17	18	19
e figures in the C	to tumn I defines the	ecale of the Subsurface Log.			TABLE		TABLE								ABLE III		
	tion is shown in the	e second column. exact depth range from which a soil sample or			Ø:	lit Spoc Sample	n . 1dea 1dea 1dea 1dea	titication (of particion s also on b	sizes, and	In the	on ba	i tine q	n esti relned	- 1 1	sails car	sisting	ores are used in classifying g of mixtures of two or more a distincte is bosed on weight
CH COTE MBS FECOVE	red.	mbols used to signify the various types of samples	١.		1 5 n	elby Tub	5011	Туре	Soll Part	icte Sta	•			7	of total	tamp to.	Percent of Total Sample
		ification on sample containers and/or Laboratory				Sample		i-Coarse	>12" 3"-12" 3"-3/4" 84-#10			rse Gre		- 1 1	and som lit	e 71e	35-50 20-35 10-20
•	column graphically analysis.	shows the depth range from which a sample was			Ш^"	ger or P Sample	Same	-Fine Coorse Nedium Fine	#10-#40 #40-#20		• •	ireaular	,		tra When sam	eling o	revelly solls with a stand-
recovery column shown in percent.		in inches for a soil sample. Rock core recovery			Ro	ck Core	1 1 1 1 1 1	Non Piestic Piestic (Co	(Grenutar)	<#200	fin	e Graic	8 4	1 1:		101 FEC	the true percentage of gravel dvered due to the relatively empter.)
ace otherwise sta	ted. the results ar	drive a split spoon sampler into the soil. e for a "Standard Penetration Test", driving a			TAPLE			7143715 140				-		L			
ility Designation	oon 12 inches with far rock core. Thi a by the length of	a 140 pound hammer dropped 30 inches. RQD is the R s equals the sum of the length of pieces greater the core run.	HOC R		The c		compactness (r consister	cy is descr	ibed in a	ecorda	nce ult			arved !	Herne	ting layers, seems, and
made on basis of	the sample as reco	in the laboratory. The visual descriptions wered and in accordance with the Unified			Term Loose		Granular :	oils ous per Foot	.N Term		lve Sci Blovs	eer Foo	t.u	_			s of soits. posit more than 5" thick.
ociles for the t	erms used in descri	. The Unified group symbol is shown in Column 9. prions are presented in Tables II and III. The			Firm Compa			11-30 31-50 251	Soft Medium Stiff			3-5 6-15 6-25		11			posit less than 6" thick.
on records as defi on the condition o	ned in Table IV. T f the sample as rec	these or consistency is based upon the penetra- he description of the soil mositure is based overed. The moisture condition is described as			<u> </u>		1		Herd			>25			1	hick.	posit less than 1/8°
-situ molsture con	tent of the sample.	advance the boring may have affected the . Special terms are used as required to describe .ch terms are listed in Table V. When sampling			1001	recorded	es in the ed during the f	enetration	Test.)	CONTIN IT	TTUENC	0 The D	Cont be	בו נ	nifors 4	iii gra	ins are of about the same
avet is often not	recovered due to th	i diameter spilt spoon, the true percentage of ie relatively small sampter diameter. The is sometimes, but not necessarily, detected by			TABLE	y i	1							_, <u> </u>	BLS VII		
evaluation of the correct by the d	casing and sampler	blows or through the "action" of the drift rig				Major	Division .	TED SOIL CL Grou Symbo	P		escrip	tion .			~	rfb Box	
he results from nuc re shown in Columns		laboratory tests for soil density and moisture				e-grained		GW	Well-gra	ded grave		ndy grav	ols.	- 	81 11	ser	
il or rock permeab	ility, the testing	method, and the depth range tested are shown			weig		r half of	GP	Gap-grad	ed or uni	form g		andy	1 !	III	II Sera	en l

 \mathbb{R}^{31} or rock permeability, the testing method, and the depth range tested are shown a Column 12.

column 13 is a graphic description of the monitor or plezometer installation. A Key of the description is presented on Table VI. Datalls of materials are noted in Table VI. Datalls of materials are noted in Table VI. Datalls of the materials are noted in the adjacent

Columns 15 to 18 indicate the results of field tests at the depth tested. The date of the test is noted below the readings.

_						. ,
DATI		1-3-83		E	MPIRE	HOLE NO 1
		1-3-83		SOIL	INVESTIGATIONS INC. SUBSURFACE LOC	1
		1 OF 1				C W DEPTH See Note
PRO	IECT	Oil Spil	l Inv	vestia	ation LOCATION Route 22. F	Pawling. NY
	,	Job No.				
	ء ! <u>د</u>	BLOWS ON				<u>, </u>
1 1 1 1	SANIPLA SANIPLE SO	SAMPLER		BLOW ON	SOIL OR ROCK CLASSIFICATION	NOTES
í	XX	////	<u> </u>	ΞŚ	CEASSIFICATION	
0=	1/	9 25	32		Brown SILT with embedded fine SAND	No water in casing
_	1	7 10			and fine to coarse GRAVEL, tree	@ completion; no water in open hole
-	 / 	12 13	21		(Moist-compact) 2.01	0730 hours 1-4-83.
-	1 2	8 8	10		Brown fine to coarse SAND and fine	İ
5 —	$\sqrt{\frac{3}{3}}$		1	<u> </u>	to coarse GRAVEL, little to some silt, cobbles.	
-		4 3	5		(Moist-loose to firm)	<u> </u>
-	4	2 4	-		9.0'	-
-	1/-	6 7 38 35	45		Brown SILT with embedded ROCK	ŀ
10-	/ 5	9 16	41		FRAGMENTS and BOULDERS (glacial	7
-	1 6				till).	<u> </u>
		103			(Damp-compact)	
-	 		+			}
15-	1/-	15 19 25 30	44	1	_	+
-	9	29 30	+	<u> </u>	Similar; moist	į
-						
-				ļ		-
-20-	1	100 50 5	 	<u> </u>	Similar; wet 21.0'	+
-	10	20 50/.4	+	ļ		
-	1 -				Boring terminated @ 21.0'. Auger refusal - possible bedrock or	
-					boulder.	
25-						+
-	 		-	1		<u> </u>
-	 		-			<u> </u>
-	1					
_					:	
						<u> </u>
-	↓ 			ļ		· •
-	┨				·	•
-	1		+	 		
-						丁
						-
-			+	1		}
-			-	 		
L _	1			· 10	. 30	SIFICATION Visual by
					•	geologist.
			٠ 3	-1/4"	I.D. hollow stem auger casing	
N1 11	化月子工鞋	HAVE THEATIC				

METHOD OF PARTIE ATION

μ = t. y,

	SHED	1.	-3-8	3	-	E) SOILS	VIPIRE INVESTIGATIONS INC. SUBSURFACE LOG	HOLE NO 2 SURF ELEV 106.0 C. W DEPTH None at completion.
PROIE	(.T			_		vesti -82-17		. Pawling. NY County
SANIPLE SANIPLE	ON ILINAY	"/1	BLOW!	TER	`	HUNS ON	SOIL OR ROCK CLASSIFICATION	NOTES
5							TOPSOIL Brown fine SAND and fine to medium GRAVEL, little to some silt. (Moist-loose)	
1/ 	2	4 4 25	50/	7.2	8		10.5'	
- <u> </u> - <u> </u> - <u> </u>	/ 3	6	33	47	80		Brown SILT with embedded ROCK FRAGMENTS and BOULDERS (glacial till). (Moist-very compact) 17.0'	·
0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	,			-			Boring terminated @ 17.0' Auger refusal - possible bedrock or boulder.	
1-1-1-1-1								
1 1 1 1 1					-	-		
\.	pioss	te ar			Cas	<u></u>	with 140 lb pin wt falling 30 per blow CLASSI with lb weight falling per blow I.D. hollow stem auger casing	FICATION <u>Visual by</u> geologist

OHO	T _	Oi Jo	l Sp b No	oill o. G	In	<u>vestig</u> 32-17J	ation LOCATION Route 22 Dutchess	
STIMNAS	ON HAMPI	" <u>/</u>	BLOW SAME		,	HEIW ON CASING C	SOIL OR ROCK CLASSIFICATION	NOTES
-							TOPSOIL 0.7'	Water level 12.4' i
				·	-		Stratified brown fine to coarse SAND and fine to coarse GRAVEL; trace to some silt, cobbles (Moist-firm)	1
1	1	7	5 3		12			
°	2	5	11	34	45		Wet at 12' ‡	Hydrocarbon odor noted.
7							15.0'	·
							Boring terminated @ 15.0'. Auger refusal - possible bedrock or boulder.	·
- - - - - - - - -							Installed 2" PVC monitor with bottom at 15.0'. Screened interval 15.0' - 6.0' (0.020" slotted screen). Riser extends 0.9' above grade.	·
							·	
1 1 1							,	
				:				

1. * f

STA FINI SHEET	ISH	ED _	1.	-4-6 -4-6 _Of_	33	_	SOIL	SINVESTIGATIONS INC. SUBSURFACE LOC	SURF ELEV 101.7 C. W DEPTH None at completio
PROII	ECT						vestig 32-17J		, Pawling, NY
	STANIS	SAMPLI NO		BLOW!	Y F R	`	HOWOR LASING C	SOIL OR ROCK CLASSIFICATION	NOTES
			-					Stratified brown fine to coarse SAND and fine to coarse GRAVEL; trace to some silt, cobbles. (Moist-loose to firm)	
5 - - - -	7	1	3 2	2		4			
10	<u> </u>	2	7	9	12	21			
.5— ———————————————————————————————————	7	3	12	57				Brown SILT with embedded ROCK FRAGMENTS and BOULDERS (glacial till) (Moist-very compact) 18.5	
20-								Boring terminated @ 18.5'. Auger refusal - possible bedrock or boulder.	
								•	
1 - 1	<u> </u>	10.11	10 0	12.4	2	SD'	on 12	with 140 lb pin wt falling 30 per blow CLASS	IFICATION Visual by

HŁE	Τ.	1		-4-8 -01-	1	_		INVESTIGATIONS INC. SUBSURFACE LOC	G W DEPTH None at completion
RO	EC.						estiga 2-17J	tion LOCATION Route 22. Dutchess C	
			JOD	BLOW:		A-04			
- 1	SANIHAS	SAMPLE NO	0/6	ŞAMP	12/1	7	BLIW ON	SOIL OR ROCK CLASSIFICATION	NOTES
1 1 1 9	1			-				Stratified brown fine to coarse SAND and fine to coarse GRAVEL, cobbles, trace to little silt. (Moist-firm)	
; - -	Z	1	<u>5</u> 9	3 . 11		12			
LO- -	7	2	6 11	10 14		21			· · · · · · · · · · · · · · · · · · ·
- - -	7			12		31			•
- - 20-	•							Boring terminated @ 17.5'. Auger refusal - possible bedrock or boulder.	
1 1 1 1								·	
1 1 1 1									
	1								
-	1								
_	-			,				2 with 140 lb pin wt falling 30 per blow CLASS	Visual by

F tom H

SHE	AR NISI ET	_1	1	-4-8 -4-8	1	-		SUBSURFACE LOCATION ROUTE 22.	C W DEPTH 10.2 at completion
PRO	OILC	T _					estig 32-17J		
n n	SASIFIES	ON HANNES	٧,	BLCIM			BLOW ON CASING C	SOIL OR ROCK CLASSIFICATION	NOTES
= 0=	Ī							TOPSOIL 0.5'	
5-								Stratified brown fine to coarse SAND and fine to coarse GRAVEL, cobbles, trace to little silt. (Moist-firm)	
-	\bigvee	1	6	6 6		12			-
-	1							Gravel layer 7' - 10'.	
-10-	7	2	2	2	+	4		Similar; saturated.	
15-	7	3	6	3	4	7		16.5'	· -
-								Boring terminated @ 16.5'	
-20-								Installed 2" PVC monitor with bottom at 12.5'. Screened interval	
-								12.5' - 3.5' (0.020" slotted screen) Riser extends 0.9' above grade.	
-								·	
-								·	<u></u>
-	-								
-	1				:				-
-					:			·	
-	1				:				· , <u> </u>
	•						:114	with the weight tailing per blow	THEATION Visual by geologist.
VI 1	4' \;	٠٠,;	***	5 1 1 7 A	14.35.		-1/4"	I.D. hollow stem auger casing	

	l Investion GTA-82-17.		
HILIMAN ON NAMPLER	BEON ON CANNET	SOIL OR ROCK CLASSIFICATION	NOTES
0		Stratified brown fine to coarse SAND and fine to coarse GRAVEL, cobbles, trace to little silt. (Moist-firm) Similar; wet. 14.0' Boring terminated @ 14.0'. Auger refusal - possible bedrock or boulder.	

SHE FI	IAR' NISI ET	HI D	1	-4-8 -4-8 _Of_	B3 1	- -	SOILS	SUBSURFACE LOCATION ROUTE 22,	G.W DEPTH None at
PRO) I C	T _					82-17J	_	
Carrieri	SANGLES	CP ILINYS	٣/,		PLER	`	BION ON	SOIL OR ROCK CLASSIFICATION	NOTES
-							``	Brown fine to coarse SAND and fine to coarse GRAVEL, little to some silt, cobbles. (Moist-loose to firm)	
5-	7	1	4	4		8			
-10-	Z	2	5	7	8	15		15' [±]	
15-	Z	3	20	46	ļ			Mixed glacial till and weathered rock. (Moist/wet-very compact) 17.0'	
-20-							,	Boring terminated @ 17.0'. Auger refusal - possible bedrock or boulder	
	% (5)	Llow	s to d	T1,+-	2	(a)		with 140 lb pin wt talling 30 per blow CLASSI with lb weight talling per blow I.D. hollow stem auger casing.	FICATION <u>Visual by</u> geologist

F. * E ++ bt

SHFE	AR' NISI	<u>_</u>	Oil		-83 1		SOIL	SUBSURFACE LOCATION ROUTE 22.	G W DEPTH 28' in casing at completion Pawling, NY
			Job	No.	. GI	A-8.	2-17J	Dutchess C	ounty
- O=	SANIPLES	could be	%	Biow SAMI	PLEK	1 、	BLOW ON	SOIL OR ROCK CLASSIFICATION	NOTES
F %-								TOPSOIL 0.5'	. 1
-		•						Brown SILT and fine SAND. (Moist-loose)	`
5-	17		3	<u>.</u> . 3		5			
-	<u>/</u>	1	2	2					-
-10-	Ι,	_		<u> </u>				11.0'	-
-	Z	2	3	5	8	13		Stratified brown fine to coarse SAND and fine to coarse GRAVEL, trace to some silt, cobbles.	
,								(Moist-loose)	
-	/	3		4		6			
-20-			4	4		9		Similar; wet	_
-	/	4	5	9_				23.5' -	-
] -		-		<u> </u>		-		Brown SILT with embedded GRAVEL and	·
25 — -	Z	5	8	10	20	30		ROCK FRAGMENTS. (Wet-compact)	
-	1							28.0'	
-30-								Boring terminated @ 28.0°. Auger refusal - possible bedrock or boulder.	
-	- 		1	-					
-	4			·	-				
-	1			<u> </u>				·	
								12 with 140 lb pin wt falling 30 per blow CLASS with lb weight falling per blow	MERCATION Visual by geologist

RQD - ROCK QUALITY DESIGNATION

after Deer, D.U. (1963)

"Technical Description of Rock Cores.for Engineering Purposes",
Felsmechanik und Ingenieurgeologie, 1, 1, 16-22.

RQD - is a modified core recovery ratio (minimum core diameter - NX, 2 1/8" inch)

Method:

Determine by considering only segments of core that are at least 4 inches long and are hard and sound.

Mechanical Breaks obviously caused by drilling are ignored.

(These breaks are fresh and when the two pieces of core are fitted together they form a tight single piece.)

Measure the entire length of such segments, divide this sum by the length of core run and multiply by 100% (RQD is expressed as a percentage).

Example:

A total of 2.5 feet of 4 inch plus pieces was recovered from Run #1.

Run #1 from 15.0' to 20.0'

$$RQD = \frac{2.5'}{5.0'} = 50\%$$

NOTE:

Carefully examine core to distinquish differences between drilling breaks and natural fractures. Fractures will generally have some type of film or rust stains along the fracture surface. "Healed" fractures should also be considered a natural break in the rock if the mineral in the fracture is softer or weaker than the surrounding rock core.

APPENDIX C

Tabulated Water Level Data

EMPIRE SOILS INVESTIGATIONS, INC.

OBSERVATION WELL READINGS

PROJECT Oil Spill Containment LOCATION Pawling, New York ELECTRIC PROBE METHOD of READING_ REFERENCE POINT (or MARK) Top of Well csg REFERENCE POINT (or MARK)_ 9 May 1983 TIME DATE _(Start) DATE -TIME (Stat Well No. Depth Ref. Elev. Elev. Well No. Depth Ref. Elev. Elev. 3 7.3 98.1 90.8 6 6.7 90.4 83.7 8R 9.7 93.2 83.5 11R 12.7 97.5 84.8 15.7 12R 101,1 85.4 88.2 16.1 13R 104.3 15 14.1 104.9 90.1 16 12.6 103.2 90.6 16R 12.7 103.0 90.3 18 14.7 103.5 88.8 103.6 18R 14.8 88.8 Marios 14.8 100.3 85.5 Surplus 23.4 103.6 80.2 Store Corral 19.9 105.4 85.5 Ford TIME : (Finish) (Finish) TIME

2.62-

(Star

_(Finish)

EMPIRE SOILS INVESTIGATIONS, INC.

PROJECT Oil Spill Containment

OBSERVATION WELL READINGS

METHOD	of READING_	ELECTRIC	PROBE	LOCATION	Pawling,	New York	_
			f Well csg	REFERENC	E POINT (or N	AARK)	
DATE 19	May 1983	TIME 100	0 (Stort)	DATE		_TIME	
Well No.		Ref. Elev.	Elev.	Well No.	Depth	Ref. Elev.	I
3	8.5	98.1	89.6				
6	7.7	90.4	82.7				1
8	10.7	93.4	82.7			<u> </u>	\downarrow
8R	10.8	93.2	82.4				_
10	15.5	103.7	88.2				_
10R	15.2	103.7	88.5				1
11	12.0	97.1	85.1				1
11R	13.7	97.5	83.8				\perp
12R	16.7	101.1	84.4	•			1
13R	17.3	104.3	87.0	·			
14	16.0	106.1	90.1				\perp
14R	16.2	106.2	90.0				\perp
15	15.2	104.9	89.7				$oldsymbol{\perp}$
16	13.6	103.2	89.6				
16R	13.7	103.0	89.3				\perp
17	15.7	102.0	86.3				L
18	15.6	103.5	87.9				L
18R	15.7	103.6	87.9				
19	18.3	103.5	85.3	·			L
Marios	15.7	100.3	84.6		·		
Surplus							
Store	24.1.	103.6	79.5				
Corral Ford	21.8	105.4	83.6				
	•	TIME 1115	(Finish)		•	TIME	

AND THE ALL PROPERTY OF THE EMPLOYMENT

EMPIRE SOILS INVESTIGATIONS, INC.

OBSERVATION WELL READINGS

Readings by

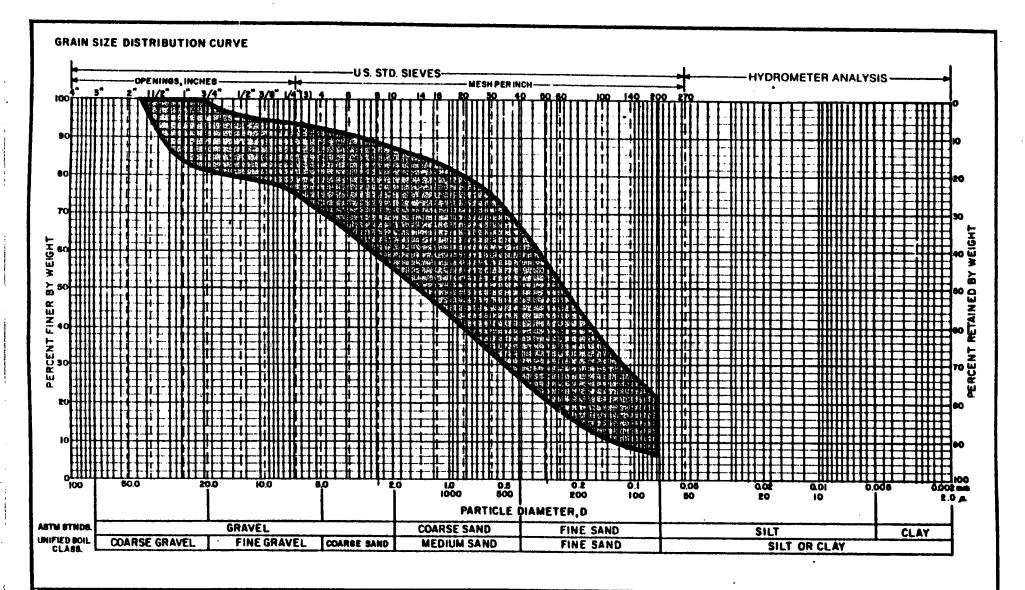
METHOD of READING Camo Laboratories

PROJECT Oil Spill Containment

LOCATION Pawling, New York

(Finish)

REFERENCE POINT (or MARK) Top of Well csq


DATE 6/22-6/24/83 TIME (St.					
Well No	Depth	Ref. Elev.	Elev '		
3	Not Read	98.1			
6	10.00	90.4	80.40		
8R	12.75	93.2	80.45		
8	12.75	93.4	80.65		
10R	17.25	103.7	86.45		
10	DRY	103.7			
11R	16.50	97.5	81.00		
11	DRY	97.1			
12R	18.50	101.1	82.60		
13R	18.50	104.3	85.80		
14R	18.08	106.2	88.12		
14	18.00	106.1	88.10		
15	DRY	104.9			
16R	16.50	103.0	86.50		
16	15.67	103.2	87.53		
17	17.08	102.0	84.92		
18R	17.50	103.6	86.10		
18	DRY	103.5			
19	19.67	103.5	83.83		
Marios	Not Read	100.3			
Surplus Store	24.58	103.6	79.02		
Corral Ford	23.00	105.4	82.40		

[E		_TIME	
Well No.	Depth	Ref. Elev.	E
-			
1		ŀ	
			·
		+	·
			
		-	
	 		
	•		
i			

TIME_

APPENDIX D

Mechanical Analysis Results

SAMPLE INFORMATION:

Shaded area represents approximate range of grain size distribution curves obtained from mechanical analyses of nine 2" O.D. X 1-3/8" I.D. split barrel samples recovered from test borings. For individual analysis results refer to tabulation following this figure.

NOTE: VISUAL SOIL CLASSIFICATIONS ON E.S.I. SUBSURFACE LOSS ARE BASED ON THE UNIFIED SOIL CLASSIFICATION SYSTEM.

MECHANICAL ANALYSIS

OIL SPILL CONTAINMENT PAWLING, NEW YORK

CK'D.

DATE: 9/83

PROJ. NO. 82-17.J

APPENDIX E

Chemical Analysis Results

CAMO LABORATORIES

A DIVISION OF CAMO POLLUTION CONTROL, INC.

POUGHFEEPSIE AREA FACILITY CAMO LABORATORY 367 VIOLET AVENUE POUGHKEEPSIE, N.Y. 12601 (914) 473-9200 ROCHESTER AREA FACILITY
LOZIER/CAMO LABORATORY
23 NORTH MAIN STREET
FAIRPORT, N.Y. 14450
(716) 425-2210

July 13, 1983

New York State Department of Transportation 4 Burnett Boulevard Poughkeepsie, New York 12603

Attn: Mr. John Schaff

RE: Pawling, Dutchess County

Contract No.: D200177

Spill No.: 811902, PIN: SP1633.701

CAMO Log No.: 83-6-12457

2 Pokullocho

Dear Sir:

CAMO Laboratories' personnel collected thirty (30) water samples June 22 - 24, 1983, with a request to analyze for DOT 602 Aromatics; the presence of gasoline.

All analyses were performed in accordance with The New York State Department of Health modified EPA 602 method "Guidelines Establishing Test Procedures for the Analysis of Pollutants; Proposed Regulations", Federal Register, Monday, December 3, 1979.

The results of this analytical investigation are the subject of this report. If you have any questions, please feel free to call. Thank you.

Sincerely,

John P. Dullaghan

Director

Measurement Services

JPD:sas Enclosures

(DOT ADAPTED METHOD 602)

All results in ug/l unless noted otherwise

STAGNANT WELL WATER

COMPOUND	SAMPLE IDENTIFICATION				
	MW #1 B - 14s	MW #2 B - 14r	MW #3 B - 3s 7	MW #4 · B - 15s*	MW #5 B - 16=
_		•			
Benzene	<1	V <1	63	<u> </u>	220
Trichloroethylene	<1	<1	<1	<u>'</u>	1
Toluene	<1		3900		. 1700
Tetrachloroethylene	<1	·			
TO CLOCK TO TO CONTROL OF THE CONTRO	 		<1		<u> </u>
Ethylbenzene	<1.	<1	56		l. o
P-Xylene	<1	<1	230		9
M-Xylene	<1	<1	960		26
Chlorobenzene	<1	<1 -	=	• .	<1
O-Xylene	<1	<1	650		62
1,4,Dichlorobenzene	<1	<1	<1		<1
1,3,Dichlorobenzene	<1	<1	<1		<1 \
1,2,Dichlorobenzene	ं	<1	1 ••••••••••••••••••••••••••••••••••••		a
Presence of Gasoline	Not Present	Not Present	(Xylene ratio >2) Present		(Xylene ratio >2 Present

^{*}Sample Not Received, well dry at time of collection.

ARCMATICS

(DOT ADAPTED METHOD 602)

All results in ug/l unless noted otherwise

STAGNANT WELL WATER

		STHEAMAI METT	WITT		
COMPOUND		SAMPLE	DENTIFICATION		
	MW #6 B - 16s	MW #7 B - 13r	MW #8 B - 18r 7	MW #9 B - 18s*	MW #10 B - 10
Benzene	.<1	<1	10		<1
Trichloroethylene	2	<1	<1	! -	<1
Toluene	2	<1	33		1.4
Tetrachloroethylene	1	<1	<1		<1
Ethylbenzene	<1	<1	<1		(1
P-Xvlene	<1	<1	3		<1
M-Xylene	<1	<1	11		<1
Chlorobenzene	<1	<1	<1		<1
O-Xylene	<1	<1	10		<1
1,4,Dichlorobenzene	<1	<1	<1		<1
1,3,Dichlorobenzene	<1	<1	<1		<1
1,2,Dichlorobenzene	<1	<1	· (1)		<1
Presence of Gasoline	Not Present	Not Present	Not Present		Not Present

^{*}Sample Not Received, well dry at time of collection. ""

TABLE 1 - (Cont.)

AROMATICS

(DOT ADAPTED METHOD 602)

All results in ug/l unless noted otherwise

STACIANT WELL WATER

COMPOUND	SAMPLE IDENTIFICATION				,
	MW #11 B - 10s*	MW #12 B - 19s	MW #13 B - 17 ':	MW #14 B ~12r	MW #15 B - 11
Benzene		<1	<1	<1	360
Trichloroethylene	•	<1	<1	<1	<1
Toluene		<1	<1.	<1 .	100
Tetrachloroethylene		<1	<1	<1	<1
Ethylbenzene		<1	<1	<1	32
P-Xylene		<1	<1	<1	66
M-Xylene		<1	<1	<1	85
Chlorobenzene		<1	<1	<1	<1
0-Xylene		· <1	<1	<1	350
1,4,Dichlorobenzene		<1	<1	<1	<1
1,3,Dichlorobenzene		<1	<1	· <1	<1
1,2,Dichlorobenzene	<u>-</u> -	<1	· <1	<1	<1
Presence of Gasoline		Not Present	Not Present	Not Present	(Xylene ratio > Present

^{*}Sample Not Received, well dry at time of collection.

(DOT ADAPTED METHOD 602)

All results in ug/l unless noted otherwise

STAGNANT WELL WATER

COMPOUND	SAMPLE IDENTIFICATION				
	MW #16 B - 11s*	MW #17 B - 8r	MW #18 B - 8s 7	MW #19 B - 6s	Field Blank
Benzene		<1	<1	<1	<1
Trichloroethylene		<1	<1	1	<1
Toluene		<1	<1	<1	<1
Tetrachloroethylene		<1	<1	<1	<1
Ethylbenzene		<1	<1	<1	<1
P-Xylene		a	<1	<1	<1
M-Xylene		<1	<1	<1	<1
Chlorobenzene		<1	<1	<1	<1
O-Xylene		-<1	<1	1	<1
1,4,Dichlorobenzene		<1	<1	<1	<1
1,3,Dichlorobenzene		(1·	<1	<1	<1
1,2,Dichlorobenzene		· <i< td=""><td><1</td><td><1</td><td><1</td></i<>	<1	<1	<1
Presence of Gasoline		Not Present	Not Present	Not Present	Not Present

^{*}Sample Not Received, well dry at time of collection.

(DOT ADAPTED METHOD 602)

All results in ug/l unless noted otherwise

REGENERATED WELL WATER

COMPOUND SAMPLE IDENTIFICATION					
CAPPOUND		SPITE	· IDENTIFICATION		T
·	MW #1 B - 14s	MW #2 B - 14r		MW #4 B - 15s*	MW #5 B - 16r
•		Ĭ			
Benzene	<1	<1	440		220
Trichloroethylene	<1	<1	200		(1
Toluene	<1	<1	7100		1900
Tetrachloroethylene	<1	<1	<1		<1
Ethylbenzene	<1 ·	<1	200		25
P-Xylene	<1-	<1	300		14
M-Xylene	<1	<1	1200		20
Chlorobenzene	<1	<1	<1	•	<1
0-Xylene	<1	<1	780		38
1,4,Dichlorobenzene	<1	<1	350		14
1,3,Dichlorobenzene	<1	<1	75		3
1,2,Dichlorobenzene	<1	<1	. 35	•	4
Presence of Gasoline	Not Present	Not Present	(Xylene ratio >2) Present		(Xylene ratio >2 Present

^{*}Sample Not Received, well dry at time of collection.

(DOT ADAPTED METHOD 602)

All results in ug/l unless noted otherwise

REGENERATED WELL WATER

COMPOUND		SAMPLE IDENTIFICATION			
	MW #6 B - 16s	MW #7 B - 13r	MW #8 B - 18r	MW #9 B - 18s*	MW #10
Benzene	<1	<1	<1		<1
Trichloroethylene	\ <1	<1	. <1		<1
Toluene	<1	<1	4000	·	. <1
Tetrachloroethylene	<1	<1	(1 .		<1
Ethylbenzene	1	<1	290	·	. <1
P-Xylene	<1	<1	70		<1
M-Xylene	<1	<1	5000		<1
Chlorobenzene	_<1	<1	<1	•	<1
0-Xylene	<1	· <1	320		<1
1,4,Dichlorobenzene	<1	<i style="background-color: blue;">(i</i>	300		<1
1,3,Dichlorobenzene	<1	<1	130		<1
1,2,Dichlorobenzene	<1	<1	(1) - (1)	•	a
Presence of Gasoline	Not Present	Not Present	Not Present	·	Not Present

^{*}Sample Not Received, well dry at time of collection.

(DOT ADAPTED METHOD 602)

All results in ug/l unless noted otherwise

REGENERATED WELL WATER

COMPOUND	SAMPLE IDENTIFICATION				
	MW #11 E - 10s*	MW #12 B - 19s	MW #13 B - 17	MW #14 · B - 12r	MW #15 B - 11x
Benzene		V <1	<1	<1	520
Trichloroethylene		<1	1.4	<1	1
Toluene		<1	1	<1	100
Tetrachloroethylene	!	<1	23	<1	1
Ethylbenzene		<1	<1	<1	8.2
P-Xvlene	_	<1	<1	<1	57
\					13/
M-Xylene	·	<1	<1	<1	28
				•	
Chlorobenzene		<1	<1	<1	<1
			•		
0-Xylene	1	<u>l·· <1</u>	<1	<1	510
1,4,Dichlorobenzene	* * * * * * * * * * * * * * * * * * *	<1	(1)	<1	<1
	İ			1	1 1 1
1,3,Dichlorobenzene		<1	<1 · · · ·	<1	<1
					+ `-
1,2,Dichlorobenzene		<1	<1 · · · · · · · · · · · ·	<1	<1
· ,					(Xylene ratio >2
Presence of Gasoline		Not Present	Not Present	Not Present	Present

^{*}Sample Not Received, well dry at time of collection.

(DOT ADAPTED METHOD 602)

All results in ug/l unless noted otherwise

REGENERATED WELL WATER

COMPOUND	SAMPLE IDENTIFICATION ·					
	MN #16 B - 11s*	15W #17 B - 8r	11W #18 B - 8s 7	MW #19 B - 6s	Field Blank	
Benzene		<1	<1	·- <1	<1	
Trichloroethylene		<1	<1	\<1	<1	
Toluene		<1	<1	1	. <1	
Tetrachloroethylene		<1	<1	2	<1	
Ethylbenzene		<1	<1	<1	<1	
P-Xylene		<1	<1	1	<1	
M-Xylene		<1	<1	<1	<1	
Chlorobenzene		<1	<1	<1	<1	
O-Xylene		<1	<1	<1	<1	
1,4,Dichlorobenzene	 	<1	<1	<1	<1	
1,3,Dichlorobenzene		<1	<1	<1	<1	
1,2,Dichlorobenzene		<1	<1 · · · · · ·	<1	<1 '	
Presence of Gasoline		Not Present	Not Present	Not Present	Not Present	

Presence of Gasoline Criteria: (A) - The presence of benzene, toluene, ethylbenzene and all three isomers of xylene. (B) - The xylene isomers present at approximately the same concentration (within a factor of 2).

^{*}Sample Not Received, well dry at time of collection.

TABLE 3

N.Y.S. D.O.T. - Pawling, New York Project

Well Measurements

Well Number	Well Depth	Static Water Level	Height of Water Column
B-14s	23'	18'	5'
B-14r	35'	18'1"	16'11"
B-3s	Not Recorded		
B-15s	16'	16'	0
B-16r	35'	16'6"	18'6"
B-16s	16'6"	15'8"	8"
B-13r	26'6"	18*6"	7'6"
B-18r	16'6"	16'6"	0
B-18s	25'	17'6"	7'6"
B-10r	38'	17'3"	20'9"
B-10s	Dry		
B-19s	21'	19'8"	1'4"
B-17	19'	17'1"	1'11"
B-12r	23'6"	18'6"	5'
B-llr	32'	16'6"	15'6"
B-lls	11'9"	11'9"	0
B-8r	35'11"	12'9"	23'2"
B-8s	14'6"	12'9"	1'9"
B-6s	13'	10'	3'

ج رہ: ·

January 17, 1984

New York State Department of Transportation 4 Burnett Boulevard Poughkeepsie, New York 12603

AST. TO AD PLANNING ADMIN. REAL EST rec'd JAN 1 8 1984

REG. DIA.

Attention: John Schaff

Assistant Regional Oil Spill Engineer

Reference: Hydrocarbon Spill

Pawling, Dutchess County, New York

Spill No. 811902 P.I.N. SP 1633.701 Empire File GTA-82-17J

SUPPLEMENTAL HYDROGEOLOGIC EVALUATIONS

LETTER REPORT

Gentlemen:

This correspondence is intended to summarize hydrogeologic evaluations by Empire-Thomsen supplemental to our formal report dated October 24, 1983, previously submitted to your office.

In the wake of heavy rainfall in eastern New York State on December 12-14, 1983, the writer returned to the referenced spill site on December 17, 1983 to obtain additional hydrogeologic data. It was anticipated that the heavy precipitation would result in a rise of the water table at this site, of sufficient magnitude to permit groundwater sampling of a key monitoring well, B-15, which was dry at the time of earlier sampling in June, 1983.

Water level readings were obtained on December 17, 1983 in all monitors with the exception of B-6, which had been destroyed. This water level data, presented on the attached tabulation sheet, was used to contour the water table in the project area on the date of readings, as illustrated on Drawing No. 7, attached. This drawing indicates the hydrogeologic regime at this site on December 17, 1983 to be essentially the same as that detailed in Empire-Thomsen's October, 1983 report. Overall groundwater flow in the area is in a southward to southwestward direction, as shown by the arrows on Drawing No. 7. Groundwater monitor cluster B-14 lies upgradient of the Amoco station, while monitor B-15 is located downgradient of those facilities.

John Schaff January 17, 1984 Page 2

Comparison of specific water level determinations in the monitors on December 17 with similar data for the chemical sampling dates in June, 1983 (presented in our formal report) indicates the water table to be generally one (1) to three (3) feet higher in elevation on December 17. As a result of this overall rise of the water table, groundwater was present in monitor B-15 on December 17, 1983.

Grab samples of groundwater were obtained by the writer on December 17 from the surface of the "standing" water column in the following monitors:

B-3	B-16	(B-16 Shallow)
B-11R (B-11 Deep)	B-16R	(B-16 Deep)
B-13R	B-17	,
B-14 (B-14 Shallow)	B-18	(B-18 Shallow)
B-15	B-18R	(B-18 Deep)

These grab samples were recovered prior to obtaining water level data in the monitors, in order to eliminate potential cross-contamination via the well probe used for water level determinations.

Groundwater samples were obtained through the use of 40 milliliter septum vials immersed several times in the upper portion of the water column in each monitor, allowing recovery of sufficient sample volume to fill a duplicate vial and eliminate vapor bubbles from that duplicate receptacle. Sample retrieval vials were not reused; two new, clean vials were employed for sample recovery and preservation at each sampling point. All samples remained under refrigeration in the custody of Thomsen Associates until their delivery on December 19, 1983 to Galson Technical Services, Inc., East Syracuse, New York.

In addition to the ten groundwater samples obtained, a "blank", consisting of distilled water, was prepared and kept with the samples at all times.

Following authorization from your office, samples from selected monitors, including those wells screened over the water table in the vicinity of the Amoco station (B-14 and B-15), were analyzed by Galson Technical Services, Inc. for concentrations of benzene, toluene, xylene and total hydrocarbons exclusive of these three components. Analysis results have been furnished to your office directly under separate cover by the testing agency; a copy of these results is attached to this letter.

John Schaff January 17, 1984 Page 3

The sample from monitoring well B-14, upgradient of the Amoco station, contained less than one microgram per liter (ug/l) of each of the parameters analyzed. However, monitor B-15, downgradient of Amoco, exhibited hydrocarbon contamination of groundwater identified by the analytical laboratory as "gasoline".

These chemical analysis results, in conjunction with the configuration of the water table over the site on the date of sampling, indicate a hydrocarbon (gasoline) contamination plume emanating from the active Amoco station in the project area.

The results discussed above are in agreement with, and collectively corroborate, Empire-Thomsen's previous findings relating to this investigation.

We trust that this additional information is of assistance to your office in efforts to remediate this hydrocarbon spill.

Should you have any questions, comments or additional input in this regard, please contact the writer at your convenience.

Respectfully submitted,

THOMSEN ASSOCIATES

Ronald Ausburn, CPGS

Project Manager

READINGS

METHOD	of	READING.	Electric	Well	Probe
	•				

REFERENCE POINT (or MARK) Top of PVC Casing

	cember 83		
Well No.	Depth	Ref. Elev.	Elev.
<u> </u>	8.6	98,1	89.5
6	DESTROYED		*
8	10.4	93.4	83.0
8R	10.7	93.2	82.5
10	15.5	103.7	88.2
10R	14.9	103.7	88.8
11	DRY		
11R	13.5	97.5	84.0
12R	16.5	101.1	84.6
13R	16.7	104.3	. 87.6
14	16.2	106.1	89.9
14R	16.3	106.2	89.9
15	15.4	104.9	89.5
16	13.8	103.2	89.4
16R	14.0	103.0	89.0
17	15.8	102.0	86.2
18	15.8	103.5	87.7
18R	15.9	103.6	87.7
19	17.2	103.5	86.3

1130 (Finish) TIME _

PROJECT Oil Spill Containment LOCATION Pawling, N.Y.

DATE TIME (St Well No. Depth Ref. Elev. Elev.				
Well No	Depth	Ref. Elev.	Elev.	
	٠			
			·	
				
				
			······································	

	1.			
			• ,	

TIME _____(Finish)

Technical Services, Inc.

6801 Kirkville Road Post Office Box 546 E. Syracuse, N.Y. 13057 Tel: (315) 432-0506

Environmental Sciences
Division

RECEIVED ESI-ALBANY

JAN 18 /984

January 9, 1984

Mr. John Schaff Asst. Regional Oil Spill Engineer N.Y.S. Dept. of Transportation, Region 8 4 Burnett Blvd. Poughkeepsie, NY 12603

RE: GTS #G1-047

Dear Mr. Schaff:

Enclosed are the results of the analyses performed on the samples we received from Empire Soils on December 19, 1983.

Originally, you authorized us to analyze only samples B-14 and B-15.

On December 29, 1983, you told us also to analyze B-3, B-11-deep, B-16-deep, B-18-deep, and B-18-shallow. We also did B-16-shallow.

Of the set, only B-15 definitely contained gasoline. B-11-deep had a pattern of early eluting peaks that did not match gasoline. B-16-deep had only a single large peak. The shallow wells had miscellaneous small peaks.

If you have any questions concerning our results, please feel free to call.

Sincerely,

GALSON TECHNICAL SERVICES, INC.

Eva Galson

Laboratory Director

EG/s1

Enclosure

xc: Ron Ausburn, Empire Thompsen

LABORATORY ANALYSIS REPORT

Client: EMPIRE SOILS INVES.

Task Number: 83121901

Location: PAWLING, NY

Job Number: G1-047

Date Sampled: 12/17/83

SPILL: 811902 · PIN: SP1633.701

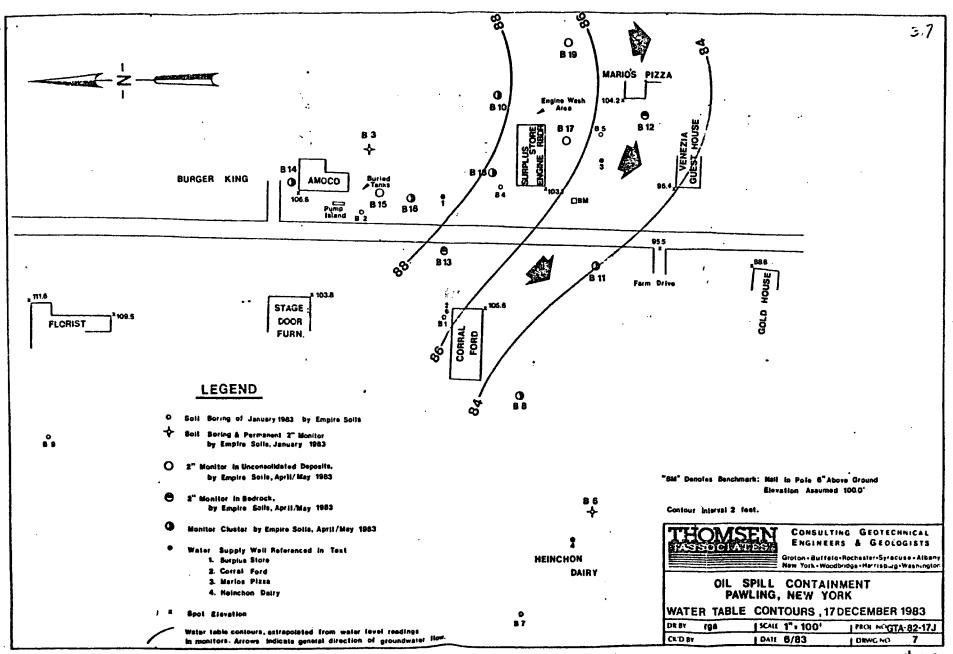
BENZENE, TOLLIENE, XYLENE, THC IN WATER

SAMPLE ID	GTS #	BENZENE (ug/1)	TOLUENE (ug/1)	XYLENE (ug/1)	*TOTAL HYDROCARBONS (ug/1)
				 	
WELL B-3	A17281	4	4	4	7
WELL B-11 DEEP	A17282	4	4	1	701
WELL B-16 SHALL	OW _A17285	4	4	4	7
WELL B-18 SHALL	OW A17288	4	4	4	2
WELL B-14 SHALL	OW A17283	4	<1	4	4
WELL 8-15	A17284	91	2870	1610	6690
WELL B-16 DEEP	8268	4	4	4	123
WELL 8-18 DEEP	A17287	4	4	4	11
BLANK	A17289	4	4	4	ব
WELL B-17	^ A17286	NOT ANALYZE) NA	, NA	NA
WELL B-13	A17290	NOT ANALYZE) NA	NA	NA

(<) LESS THAN

(>) GREATER THAN

NA - NOT APPLICABLE


NO - NOT DETECTABLE

NS - NOT SPECIFIED

Footnotes: *Other than benzene, toluene, xylene, quantified as heptane.

Submitted by: Os Hay Approved by:

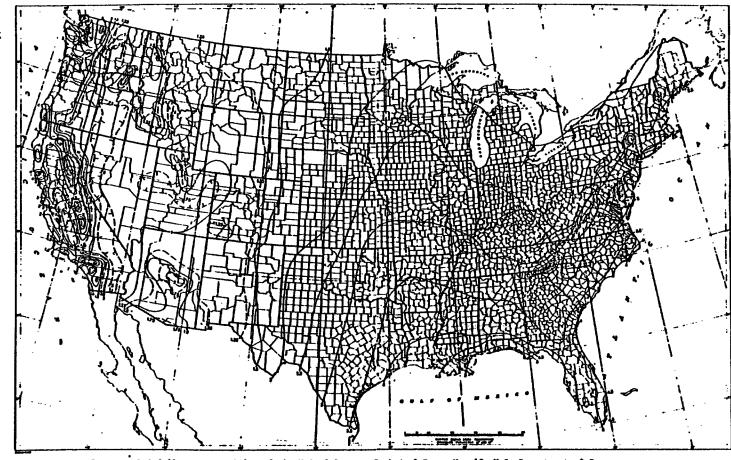
Date: 1/9/84

(47-15-11 (10/83)

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID AND HAZARDOUS WASTE INACTIVE HAZARDOUS WASTE DISPOSAL SITE REPORT

PRIORITY CODE:	2a	SITE CODE:	314060
NAME OF SITE:	NYSDOT Spill No. 811902		REGION: 3
STREET ADDRESS	Route 22		
TOWN/CITY:	Pawl ing	COUNTY:Dutche	SS2
NAME OF CURRENT	T OWNER OF SITE: Jay Maxwe	11	
	RENT OWNER OF SITE: Maxwell		s, Rt. 22, Pawling
TYPE OF SITE:	OPEN DUMP X	STRUCTURE	LAGOON
ESTIMATED SIZE	: 20 ACRES		
SITE DESCRIPTION	ON:		
Commercial area just north of t	a along Route 22, north of cown line of Patterson in P	Brady Brook and so utnam County.	outh of Akindale Rd.,
2) I 3) C 4) H	parcels, whose wells were t laxwell Engine Rebuilders nex Venezia, guest house → corral Ford leinchon Dairy lario's Pizza	ested, indicate ga	soline present in well
		•	•
	DISPOSED: CONFIRMED TY OF HAZARDOUS WASTES DISE TYPE	SUSPE POSED:	· (POUNDS, DRUMS,
Benzene			
<u>Toluene</u>			
M-xylene			
0-xvlene.			
E <u>thyl benzene</u> Tetrachloroethyl	lene		
	•		PAGE 3 110

TIME PERIOD SITE WAS USED FOR HAZARD	
	, 19,
OWNER(S) DURING PERIOD OF USE:	
SITE OPERATOR DURING PERIOD OF USE:	
ADDRESS OF SITE OPERATOR:	·
ANALYTICAL DATA AVAILABLE: AIR	SURFACE WATER GROUNDWATER
SOIL	SEDIMENT NONE
CONTRAVENTION OF STANDARDS: GROUN SURFA	NDWATER DRINKING WATER X
SOIL TYPE:	-
DEPTH TO GROUNDWATER TABLE:	
LEGAL ACTION: TYPE:	STATE FEDERAL
STATUS: IN PROGRESS	COMPLETED
REMEDIAL ACTION: PROPOSED	
IN PROGRESS	
NATURE OF ACTION:	
ASSESSMENT OF ENVIRONMENTAL PROBLEMS	5:
Chemicals in private wells and groun	indwater.
ASSESSMENT OF HEALTH PROBLEMS:	
	INIVERICIENT INFORMATION.
PERSON(S) COMPLETING THIS FORM:	·
• •	NEW YORK STATE DEDARTMENT OF HEALTH
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION	NEW YORK STATE DEPARTMENT OF HEALTH
NAME A Woodard	NAME Ronald Tramontano
TITLE SWMS	TITLE Bur. Tox. Subst. Assess.
NAME R.A. Olazagasti	NAME
TITLE_SWMS	TITLE
DATE: 12/83	DATE: 12/83



Uncontrolled Hazardous Waste Site Ranking System

A Users Manual (HW-10)

Originally Published in the July 16, 1982. Federal Register

United States Environmental Protection Agency

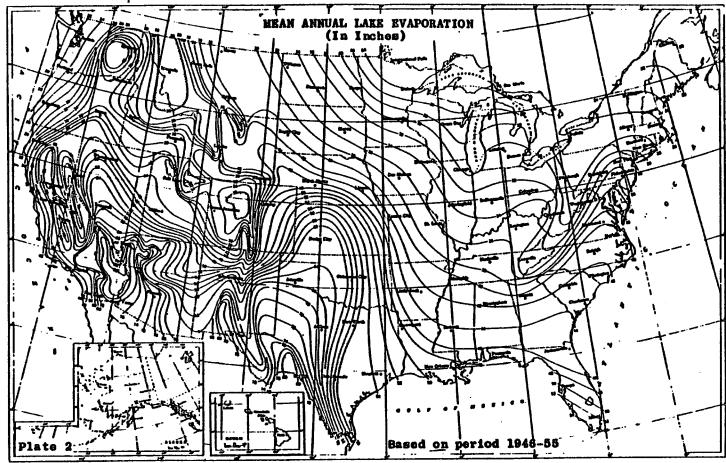
Source: Rainfall Prequency Atlas of the United States, Technical Paper No. 40, U.S. Department of Commerce, U.S. Government Printing Office, Mashington, D.C., 1963.

FIGURE 6 1-YEAR 24-HOUR RAINFALL (INCHES)

TABLE 2
PERMEABILITY OF GEOLOGIC MATERIALS

Type of Material	Approximate Range of Hydraulic Conductivity	Assigned Value
Clay, compact till, shale; unfractured metamorphic and igneous rocks	<10 ⁻⁷ cm/sec	0
Silt, loess, silty clays, silty loams, clay loams; less permeable limestone, dolomites, and sandstone; moderately permeable till	10 ⁻⁵ - 10 ⁻⁷ cm/sec	
Fine sand and silty sand; sandy loams; loamy sands; moderately permeable limestone, dolomites, and sandstone (no karst); moderately Fractured igneous and metamorphic rocks, some coarse till	10 ⁻³ - 10 ⁻⁵ cm/sec	2
Gravel, sand; highly fractured Igneous and metamorphic rocks; Dermeable basalt and lavas; Carst limestone and dolomita	>10 ⁻³ cm/sec	3

*Derived from:


Davis, S. N., Porosity and Permeability of Natural Materials in Flow-Through Porous Media, R.J.M. Dawest ed., Academic Press, New York, 1969

Freeze, R.A. and J.A. Cherry, Groundwater, Prentice-Hall, Inc., New York, 1979

14

Source: Climatic Atlas of the United States, U.S. Department of Commerce, Mational Climatic Genter, Ashville, N.C., 1979.

N.

Source: Climatic Atlas of the United States, U.S. Department of Commerce, National Climatic Center, Ashville, N.C., 1979.

FIGURE 4 MEAN ANNUAL LAKE EVAPORATION (IN INCHES)

SUPERFUND

NATIONAL PRIORITIES LIST SEMINAR

EPA REGION II

ALBANY, NY

Observed Release

The release and the background well must be in the same aquifer at comparable elevations.

Knowledge of flow gradients helps in determining where to look for background versus contamination...but beware of local or seasonal variation. The purpose is to find a nearby well in the aquifer of concern that is not under the influence of the site.

Background well(s) must discriminate out any alternative sources of the contamination.

The attribution of the release to the facility is strengthened if the substances found in the release are documented to have been deposited at the facility.

Depth of the Aquifer of Concern (Page 12)

- Distance between the deepest point of known contamination and the top of the aquifer of concern.
 - Deepest level at which contamination is documented.
 - Highest seasonal level of the saturated zone of the aquifer.
- If depth of deposit is unknown, 6 feet may be assumed.

Reference 6.1

STATE OF NEW YORK

OFFICIAL COMPILATION

OF

CODES, RULES AND REGULATIONS

MARIO M. CUOMO Governor

GAIL S. SHAFFER Secretary of State

Published by DEPARTMENT OF STATE 162 Washington Avenue Albany, New York 12231

1/83

Note 1: Refer to Note 1 under Class "AA" which is also appil-cable to Class "B" standards.

CLASS "C"

Best usage of waters. Suitable for fishing and all other uses except as a source of water supply for drinking, culinary or food processing purposes and primary contact recreation.

9-30-74

397 CN

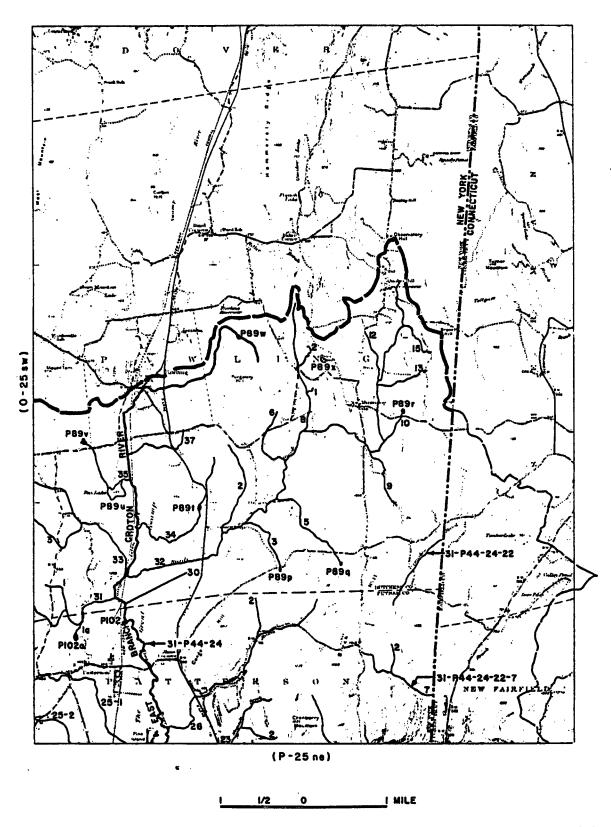
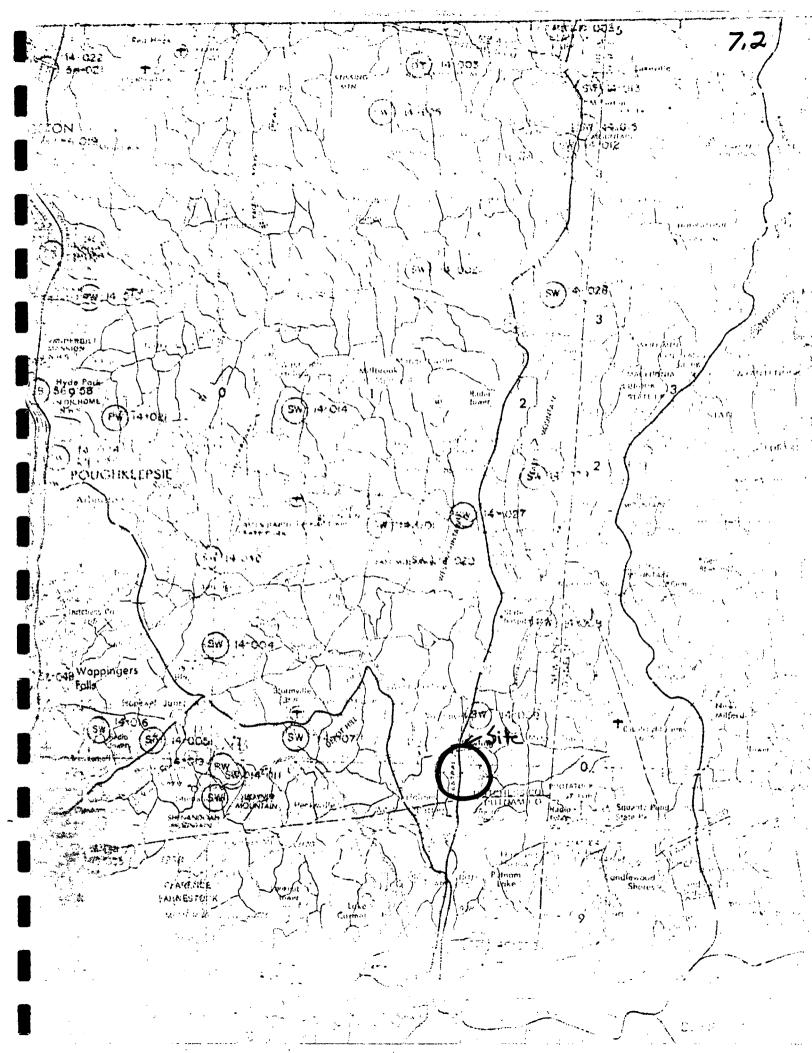

2634			TA	ABLE I (contd.)			
2	Item No.	Waters Index Number	Name	Comments	Map Ref. No.	Class	Standards
11-15-66	346	H-31-P 44-24-31- la-P 102a	Subtrib. of East Branch Croton River	1	0-25se	В	В
66	347	H-31-P 44-24-31- P 102b	Subtrib. of East Branch Croton River		0-25sw	, В	В
	348	H-31-P 44-24-31- P 890	Ballard Pond		0- 25sw	В.	В
K	349_	H-31-P 44-24-32 portion	Brady Brook	From mouth to trib. 5.	0-25se	c	C(T)
	350	H-31-P 44-24-32 portion	Brady Brook	From trib. 5 to source.	0-25se	D	D
	351	H-31-P 44-24-32- 2,3,5	Tribs, of Brady Brook		0-25se	·c	C(T)
	352	H-31-P 44-24-32- 3-P 89p	Subtrib. of Brady Brook		0-25se	D	D
	353	H-31-P 44-24-32- 5-P 89q	Subtrib. of Brady Brook		0-25se	D	D
	354	H-31-P 44-24-32- 6,8,9,10,12,13,15 and tribs. 8-1,8-2, 8-P 89x,10-P 89r	Tribs. of Brady Brook and subtribs.		0-25 se	D .	D

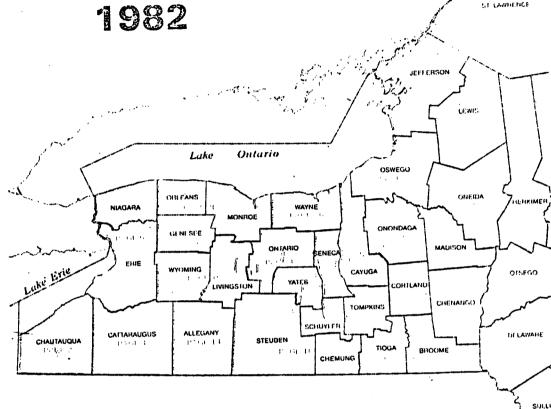
TABLE I (cont'd)

Item	Waters Index Number	Name	Description	Map Ref. No.	Class	Standards
280	H-31-P 44-23-5-	Black Pond		0-24se	В	В
281	P 80 H-31-P 44-23-P 76j	Sagamore Lake		P-24ne	В	В
282	H-31-P 44-23-8,9, 10 and tribs. 8-1, 8-1a,8-1b,8-1b-P 76K	Tribs. of West Branch Croton River and subtribs.		P-24ne	D	D
283	H-31-P 44-24 portion	East Branch Croton River	From mouth to P 89 (East Branch Reservoir).	P-25sw P-25nw P-25ne		A(T)
284	H-31-P 44-24 portion	East Branch Croton River	From P 89 (East Branch Reservoir) to trib. 16.	P-25ne	Ā	A
285	H-31-P 44-24 portion	* East Branch Croton River	From trib. 16 to Pawling.	P-25ne 0-25se	С	C(T)
286	- H-31-P 44-24 portion	East Branch Croton River	From Pawling to source.	0-25se	D	D
287	H-31-P 44-24-1 portion	Holly Stream	From mouth to trib. 3. Parts not in New York City-owned lands.	P-25sw P-25ny P-25se	V	C
288	H-31-P 44-24-1 portion	Trib. of East Branch Croton River	From trib. 8 to source.	P-25se	e C	C

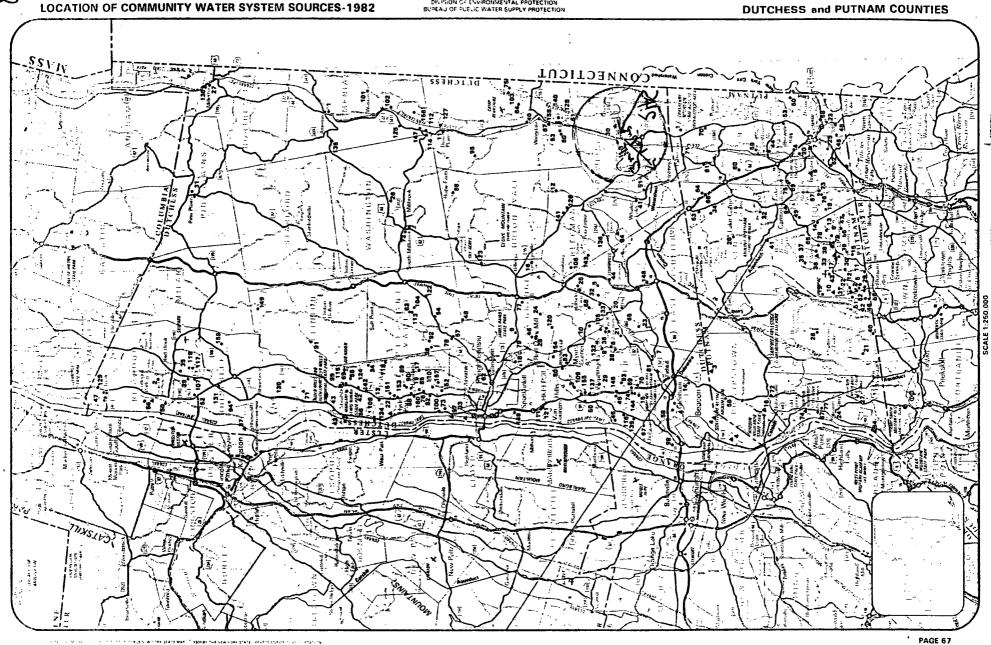

§ **864.9**

PAWLING QUADRANGLE

MAP 0-25 se


SIGNIFICANT HABITAT OVERLAY DO REPARTION TO GIVE A STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION AND CONSERVATION OF SIGNIFICANT AND WILDLIFE WAY AND THE THE THE SIGNIFICANT HABITAT UNIT COURT THE STATE SIGNIFICANT HABITAT UNIT COURT TO SHAPE AND CONSERVATION OF SIGNIFICANT HABITAT UNIT COURT TO SHAPE AND COURT TO

New York State Atlas of Community Water System Sources


New York State Atlas of System Sources

1982

TABLE OF CONTENTS

FORWARD			PAGE 1				
COUNTY	PAGE	COUNTY	PAGE	COUNTY	PAGE	COUNTY	PAGE
ALBANY		FRANKLIN. FULTON GENESIE GRETNE HAMILTON HERKIMER JEFFERSON KINGS LEWIS LIVINGSTON MADISON MONROE MONROE NASSAU NEW YORK NIAGARA	. 58 . 8 . 64 . 48 . 34 . 36 . 36 . 10 . 28 . 8 Y . 53 . 76	ONEIDA		SCHOHARIE SCHUYLER SC	18 24 16 78 70 20 18 68 50 52 26 4 74 10

CN G	DUT
COMMUNITY	CHESS
MISAS BIFT ALLAN	COUNTY

POPULATION SOURCE

Signature Marchael State (1987), 90, 56 (1987), 73 (198	Sichelon Community Sichel	22 mgs. Town from a more District. Mrop. 23 mgs. Towns a more of the Company 50 mgs. 24 mgs. 25 mgs. 2	nicipal Community Control Net 19:50:50 No. 3 Control Net 19:50:50 No. 3 Control Net 19:50:50 No. 3 Control Net 19:50:50 No. 3 Control Net 19:50:50 No. 3 Control Net 19:50:50 No. 3 Control Net 19:50 No. 3 Control N
Here is the second of the seco		Crus Elbor Creek, Wolls Wells (Infiltration Gallery) Wells	con & Perzings

Sinn Ma	5	
no.Municipal Community	COMMUNITY WATER SYSTEM	
	POPULATION	
	SOURCE	

PUTNAM COUNTY

COMMUNITY WATER SYSTEM

POPULATION SOURCE

***NO.5C	Senic Vice Web: in Home Part. 25. Walls show Acres Vice Veb; is Home Part. 26. Walls show Acres Vice Vice Vice Vice Vice Vice Vice Vice	Mobile Home Cardons (1975) Wontain View Abbite Essates (1975) Worthern Dutchess Mobile Home Park (1975) Morthern Dutchess Mobile Home Park (1975) Morthern Dutchess Mobile Home Park (1975) Morthern Dutchess Mobile Home Park (1975) Mobile Frain (1975) Mobi	Municipal Community Higher Will i wich is since Park. Higher Yalley Mobile Court. High Resous Park. High
		*	
Mondimitigal Community Mondimitigal Community Capachin Theological Seminary Capachin Theological Seminary Carponter Trailer Park Carponter Trailer Park Capachin Trailer Carr Cata Saing Trailer Cata Saing Trailer Cata		22 Fibratian Lodge. 23 For Hill Ectaters. 24 Garrison Natur Supply 25 Garrison Natur Supply 26 Garrison Natur Supply 27 Garrison Natur Supply 28 Garrison Natur Supply 29 Hill Sate States. 29 Garrison Natur Supply 29 Hill Sate Supply 29 Hill Sate Supply 29 Hill Sate Supply 20 Hill Sate Natur Observed # 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Action (Community Allows (Common) Action (Common) Barboury His Strict (Common) Branty His Strict (Common) Branty His Strict (Common) Branty His Strict (Common) Common (Action (Common) Common (Action (Common) Common (Action (Common) Common (Action (Common) Common (Action (Common) Common (Common) Labor (Common) Common (Common) Comm
200. Relis	System E	DO Wells Bo	Bio Mells 100 Mells

s, Wall (Infiltration Galtery) Manopac

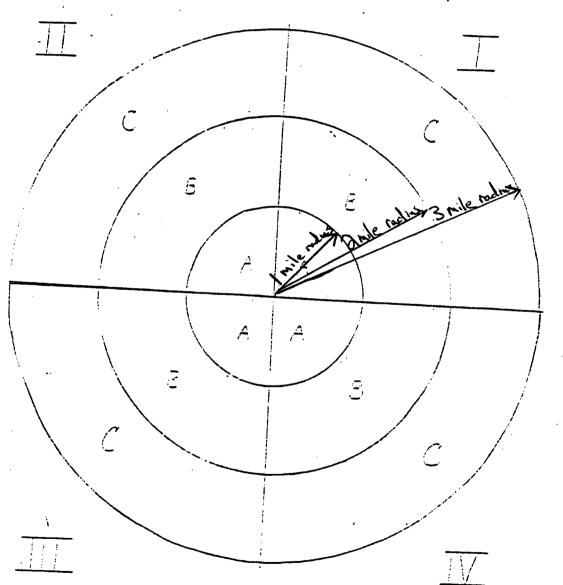
Croton System.	System, overflow does into	Thing to are as everyoned to
the for aware system.	but has timited digabation to	Structions ag tart of the Chart

PAGE 66

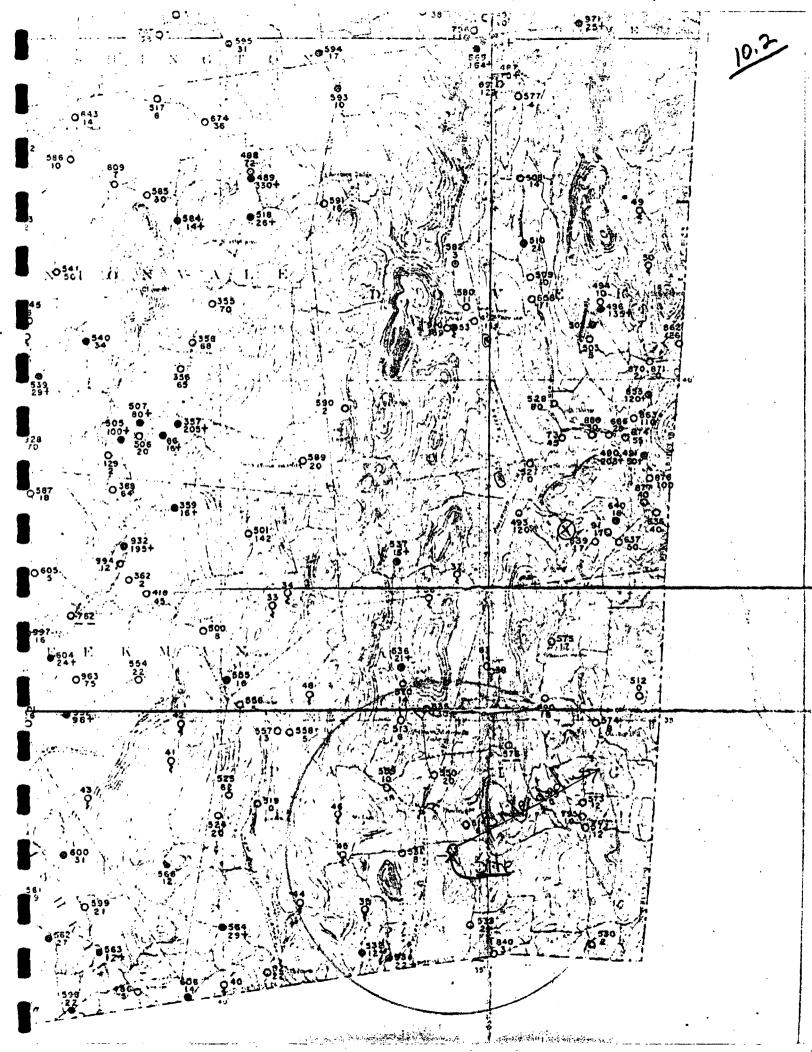
Lo pomp into

POPULATION COUNT

Population within a 3-mile radius of each Phase I site is determined using the coordinate system illustrated below. The number of residences for each quadrant and section is determined by overlaying this pattern onto a U.S.G.S. 7.5 minute topographic map. A multiplier of 3.8 persons per residence is used to determine population in accordance with Mitre Model 1985.


A = 1 mile radius

B = 2 mile radius


C = 3 mile radius

(Figure not To Scale)

100 dwellings x 3.8 = 403
121 dwellings x 3.8 = 1193
314 dwellings x 3.8 = 1319
Total Population = 2915

MAP OF DUTCHESS COUNTY, NEW YORK SHOWING LOCATION OF SELECTED WELLS AND SPRINGS

Location: See section entitle: Explanation of Tables,"

Altitude above sea level: Approximate altitude from topographic maps.

Type of well: Orl, drilled; Dr., driven.

Mater level: Reported average water level. Plus sign (*) preceding figure indicates level to which water rises above land surface.

Use: Com, commercial; Dom, domestic; Ind, industrial; PS, public supply.

Remarks: gpd, gallons per day; gpm, gallons per minute; (a) water analysis in table 10; (b) to; of well in table 12.

					0	Altitude above	•	Depth below	*	Depth		Water level below		Yield		
	Well				Owner pr	sea level	Type of	land surface	Diameter	to bedrock	Water-bearing	land surface	Method of	(gal tons per		
	number		Location		OCCUPANT	((eet)	well	(feet)	(inches)	(feet)	formation	(feet)	lift	minute}	Use	Remarks
	Du I				Edward Lasher	80	Orl	69	6	44	Hudson River formation	8	force	20	farm	
	Du 2				J. M. Coon	190	Ort	75	6	54	. do.	25	None	2	None	Yield inedequate. Well destroyed.
	Du 4	134,	3.2M,	6.0W	W. H. Redder	200	Or I	77	6	50	do.	12		35	Dom	
	Du 7	134,	3.7H,	6.7₩	Edward Sturges	220 -	Ort	210	6	6	do.	20	Suction	20	Dom	
	Du 8	13Y,	3.8N,	7.1¥	J. Rockefeller	280	Ort	144	6	12	do.	12	do,	40	Dom	'
	Du 9	134,	3.6M,	7.6W	Charles Denegar	220	Orl	112	6	8	do.	17	Jet	3	Farm	No increase in yield below a depth of 70 ft.
	Du 12	137.	4.ON.	9.04	Roland Redmond	60	Dri	321	8 to 6	, 99	do.	34	Hone		None	Well abandoned.
	Du 13	137,	4.0N.	8. M	da.	100	Drl	320	10 to 8	43	do.	39		4	None	do.
	Du 14	134,	4.1H.	8.0M	Village of Tivall	120	Dr 1	60	10	40	do.	20	Turbine	60	PS	Average consumption is 4,000 gpd. (b).
	Du 15	137.	4.9M,	8.6¥	Albert Sengstack	180	Drt	79	6	23	do.	26	Force	4	Dom	
	Du 16	134,	5. IN,	8.8v	Howland Davis	160	Dri	202	6	9	do.		do.	36	Dom	
	Du 18	134,	4.8M,	7.3¥	G. L. Cole	180	Ort	127	. 6	62	do,	7		20	Farm	
	Du 19	137,	4.5M,	6.7⊌	J. Heinshon	180	Dri	67	6	40	do.	14	Force	20	farm	
	Du 20	137,	3.2M,	4.1W	George Hubbard	160	Drl	60	6	25	do.	5	Suction	20	Dom	·
	Du 25	137,	1.0N,	6.7⊌	C. Schaffer	200	Dr1	137	6	19	do.	32	Hone	10	Dom	Yield 0.75 gpm when well was 90 ft deep. (b).
	Pu 26	,137,	1.9N,	6.3W	Malcolm Cooper	200	Ort	197	6	57	do,	2	do.	20	Farm	
	Du 28	137,	3.3M,	7.6W	M. Schweiger	200	Drl	54	6	13	do.	30	Force	5	Done	
	Du 32	137,	1.7M,	7.9¥	Samuel Robbins	· 200	Orl	98	6	15	do.	35	do.	12	Farm	
	Du 35	137,	1.44,	8.3V	William Blohm	160	Ort	78	. 6	10	do.	2	Jet	2	Dom	
	Qu 36	137,	1.6N,	8.2V	C. Sottery	160	Orl	132	6	-	do.	17	Suction	5	Dom*	Yield 2.5 gpm when well was 27 ft deep. (a).
	Du 38	137,	Ó.8N,	8.3W	A, Bolander	160	Drl	74	6	18	do.		••	5	Com	
	Ou 39	134,	O.IN,	8.5W	Duncan Watt	180	Orl	97	6	11	da.	13	Suction	8	Dom	
	Du 40	134,	1.5N,	8.7¥	A. C. Zabriskie	120	Ort	620	6	40	do.	60	do.	3	Don .	Listed in U. S. Geol. Survey Water-Supply Paper 102 (see well 147, p. 173).
	Du 41	137,	0.9N.	6.3W	ira Barringer	200	Drl	110	6	52	do.	6		40	Don .	
	Du 42	137,	1.9N,	5.4W	H. Fraleigh	200	Drl	84	6	14	do.	12		30	Dom	•
	Du 43	I3Y,	2,411,	7.2⊌	Percy Sherman	260	Orl '	132	6	40	do.	12		17	Dom	
,	Du ble	137,	2.3N,	7.6W	Harold Wheele:	240	Drl	88	6	17	do.	3		30	Dom	
	00 45	137,	2.3N,	4.6W	J. J. Rall	180	Dug	12	48		Plaistocene deposit	8	Suction	2	Don	
,	Du 46	137,	2.8N,	3.6W	G. Osborne	340	Drl	86	6	5	Hudson River formation	24		12	Dom	
	Du 48	137,	1.1H,	3.0⊌	A, Singher	380	Drl	229	6		do.	40	Force	15	farm	(a).
	Du 50	137,	1.9N,	2 , 8W	P, Clemets	360	Dr1	62	6	28	do.	**		5	Dom	Well supplies two homes.
	Du 51 '	137,	2.7N,	2.74	F. C. Wolcott	290	Drl	118	6	15	do.	14	Suction		Farm	
	Du 53	137,	0.5N,	2.6W	John Odak	540	Orl	84	6	15	do.	20		4	Dom	
	Du 54	137,	1.ON,	2.34	Clinton Gallagher	580	Drl	118	6	6	do.	6	Suction			Yield 2 gpm when well was 40 ft deep,
	Du 55				E. A. Trotter	500	Drl	107	6	85	do.	15	Force		Dom	
								-		-		-		-		

Table 13. -- Records of selected wells in Dutchess County (Continued)

Well number	Location	Omer Or occupant	Altitude above sea level (feet)	Type of well	Depth below land surface (feet)	Diameter (inches)	Depth to bedrock (feet)	Water-bearing formation	Water level below land surface (feet)	He thad of lift	Vield (gallons per minute)	Use	Remarks
Du 519	14Y, 13.05, 5.0E	Sanita Hills Comp	900	Drl	185	6	0	Hudson River formation	37	Force	20	None	Three other abandoned wells on property, .
Du 524	14Y, 13.3S, 4.3E	Interchurch Camp Society, Inc.	740	Drl	, 52	8 to 6	20	Cheshire quartzite and granite and gneiss, undiff.	18	do,	8	Dom	Drawdown 30 ft after pumping 8 gpm for 8 hrs.
Du 525	14Y, 12.8S, 4.5E	Whaley Lake Inn	720	Drl	72	6	62	Granite and gneiss, undiff.	24	do.		Dom	
Du 526	15Y, 2.0N, 8.6W	Robert Lyons	220	Drl	30	6		Pleistocene sand and gravel	4	Suction	25	Dom	· ·
Du 52 7	144, 7.25, 9.58	Wingdale Hotel	430	Drl	130	6	0	Stockbridge limestone				Dom	<i>:</i>
Du 528	14Y, 6.25, 10.0E	Brockshire Manor	330	Drl	180	6	80	do.	7.	Suction		Dom	•
Du 529	15Y, 8.ON, 2.6W	Harry Sickle	400	Dri	87	6	30	Hudson River formation	16	do.	6	Dom	(b).
Du 530	14Y, 15.4S, 10.7E	G, C'Hara	1,260	Del	185	6	2	do.		Je t	30	Dom	Yield 20 gpm when well was 150 ft deep. Temperature 50 ⁰ f, June 1949.
Du 531	14Y, 13.8S, 7.3E	Charles Utter	520	Drl	300	6	8	Stockbridge limestone	8	Suction	6	Dom	
Du 532	147, 15.58, 6.78	H. Krojalis	70 0	Dug	12	48		Pleistocene sand and gravel		do.		Dom	
Du 533	147, 15.0\$, 8.5E	Raich Gwinn	450	Drl	130	6	28	Stockbridge limestone	26	Turbine	40	Com	Temperature 54 ⁰ F, June 1949.
Du 534	147, 15.65, 7.2E	A. Pennell	530	Dug	22	48		Pleistocene sand and gravel	14	Suction	,	Farm	
Du 535	147, 11.45, 7.8E	H, J, Kurris	460	Dri	130	6		Pleistocene deposit		Jet		Farm	1
Du 536	147, 10.85, 7.36	George Dykeman'	530	Dug	21	48	••	Pleistocene till	6	Suction		Dom	<i>1</i> ~
Du 537	14Y, 9.0S, 7.3E	William Greimer	500	Dug	15	57		do.	10	do.		Farm	10
Du 539	144, 5.78, 1.3E	J. B. Walsh	540	Dug	29	48		do.	, 13	do.		Dom	Well used only in summer.
Du 540	147, 5.15, 2.18	A. Broome	750	Dug	34	53	34	Pleistocene sand	18	Hand		Dom	do.
Du 541	14Y, 3.9S, 1.6E	E. F. Acken	730	Dri	102	6	50	Hudson River formation	14	Jet	8	Farm	Yield 2 gpm when well was 75 ft deep.
Du 542	147, 1.85, 0.8E	El Fancho	520	Drl	98	6	21	' do.	18	do.	7	Com	Yield did not increase below depth of 83 ft.
Du 543	147, 3.18, 0.76	Paul Berger	720	Drl	293	6	12	do.		Force	30	Farm	
Du 545	14Y, 4.8S, 1.1E	W. R. Parliman	580	Dri	64	6	6	do.	4	Suction	8	Farm	
Du 546	15Y, 0.9S, 10.2W	Dutchess County Broadcasting Co.	1,305	Drl	185	6	0	Granite and gneiss, undiff,			5	Dom	
Du 547	14Y, 0.25, 8.6E	Carl Sabo	400	Drl	184	. 6	. 	Pleistocene deposit		None	7.5	Dom	Well abandoned; water contained clay.
Du 548	15Y, 11.7N, 1.4W	Dutchess Hatchery	330	Drl	115	6	16	Hudson River formation	·		11	Farm	Two other wells on property, 415 ft and 385 ft des produced no water.
Du 549	13Y, 17.15, 8.7E	F. Schern	400	Drl	155	6	110	Stockbridge limestone	38	Jet	40	Вол	
Du 550	14Y, 12,5S, 7.9E	Pa⊲ling Rubber Corp.	140	Drl	145	6	20 '	do.	4	do.	50	Ind	Drawdown 10 ft after pumping 50 gpm for 10 hrs. Temperature 51 ⁰ F, June 1949. Average consumptions 30,000 gpd. (a).
Du 551	14Y, 11.9S, 0.7E	Pater O'Brien	360	Oug	10	36	10	Pleistocene gravel	9	Suction	14	Dom	Well supplies 5 families and small airport.
Ou 552	14Y, 11.5\$, 1.7E	Samuel Sottile	380	Orl	96	6		do.		Jet	40	Dom	Well flows; supplies restaurant and 15 families. (a) (b),

Table 13 .-- Records of selected wells in Dutchess County (Continued)

 ell		Owner or	Altitude above sea level	Type of well	Depth below land surface (feet)	Diameter (inches)	Depth to bedrock (feet)	Water-bearing formation	Water level below land surface (feet)	Method of lift	Yield (gallons per minute)	Use	Remarks
mt.or	tocation	occupant	(feet) 480	Drl	271	6	.8	Hudson River formation	18	Force	9	Dom	
553	147, 9.25, 0.26	Samuel Sottile	460	Drl	205	6	22	Stockbridge limestone	35	Jet	7	Farm	
554	144, 10.85, 2.98	Kendall Bros.	580	Dug	16	36	16	Pleistocene till	6	Suction		Dom	
555 556	14Y, 10.95, 4.4E	Joseph B. Inness Albert Burdick	550	Drl	125	6	. 5	Granite and gneiss, undiff.	21	Force	25	0om	Well supplies 3 families.
	16.0 L1 SC E 25	John Tartaro	820	Drl	• 50	6	13	do.	10	Suction	8	Dom	
557	144, 11.85, 5.36	do.	900	Dri	235	6	, 5	do.	12	Jet	6	Dom	Yield 2 - 3 gpm when well was 90 ft deep.
558	147, 11.85, 5.58		500	Drl	125	6	10	Stockbridge limestone	5	Suction	20	Dom	
559	14Y, 12.75, 7.1E		380	Drl	× 135	6		do.	10	Force		Farm	
560	147, 13.45, 0.76	_	980	Oug	34	36	19	Pleistocene gravel	29	do.		Dom	
561	14Y, 14.55, 1.0E		660	Dug	37	36	27	Pleistocene sand	7	Suction		Dom	
562	147, 15.25, 1.4E		800	Dug	12	36		Pleistocene till	9	do.		Dom	·
563	147, 15.45, 2.36		920	Dug	29	: 48		do.	16	do.		Dom	
564	14Y, 15.0S, 4.3E		920	Dug	. 14	54	12	do.	11	do.		Dom	,
5ć 6	147, 14.05, 3.46		140	Drl	65	6	40	Hudson River formation		Jet	9	Dom	Well flows at 3 gpm. (a).
567	15Y, 10.5N, 6.6N		340	Ort	226	6	56	Stockbridge limestone	15	Suction	45	Dom	
563	144, 12.65, 0.21		550	Drl	499	6	14	do.	42	Force	7	Farm	,
570	147, 11.05, 7.4		950	Dri	406	6	12	Hudson River formation	42	do.	4	Dom	·
572	147, 13.45, 10.5		960	Drl	307	6	12	do.	47	Turbine	5	Dom	
573	144, 13.05, 10.5			Drl	235	6	8	do.	19	force	• ••	Dom	
574	147, 11.65, 10.8		1,260		153	6	17	do.	20	Jet	18	Dom	
575	144, 10.38, 9.9		810	Dr1	•	8		do.		Force		Farm	1
576	144, 12.05, 9.2	E T. E. Dewey	770	Drl	850	6	4	Stockbridge limestone	5			None	
577	144, 1.05, 9.4	•		Drl	418		39		19	Jet	12	Dom	
578	137, 16.75, 8.9	E Charles Webster	470	Drl	55	6	11	•		do.	30	Com	(a).
u 580	144, 4.65, 8.4	E Fairview Manor	450	Drl		6			22		8	Dom	(a).
u 582	144, 3.85, 8.3	E John Hauff	410	Drl		6	3		9	Cen-	10	Dom	(a).
u 583	15Y, 3.ON, 8.0	W Fishkill Rural Cemetery	240	Dri	126	6	0	Stockeringe Timestone	•	trifug	al		
ر ج	147, 3.15, 3.1	SE E. Dunlavey	690	Dug	14	36		Pleistocene till	11	Suctio	on	Dom	
0u 584			730	Drl	94	6	30	Hudson River formation	n 18	Jet	25+	Faro	Two other wells and several other springs also on property.
Du 58!	144, 2.65, 3.	ir biogeo	* =						20	do.		Dom-	•
Du 59	144, 2.05, 1.	BE William Adel	590	Drl	100		10	•		force		Dom	
u 53	7 14Y, 7.7S, I.	IE A. B. Huges	740	Dr!	450	6	18			Jet	60	Fari	m Well supplies two homes.
u 53	3 147. 8.35. 0.	6E W. J. Crocker	680) Dri	250	6	10	g do.	•-	Force	_	Dom	

0

.

Du 589 147, 7.18, 5.8E A. B. Hamal

1,220 Dr1

Reference 11

TELEPHONE CONVERSATION MEMORANDUM

CLIENT NYSDEC	PROJ. No.	06281
PROJECT	DATE10	/30/86
•	TIME1:	20 P.M.
CALL TO/FROM Laura Zaines	REPRESENTING	Dutchess County Soil and Water Conservation
PHONE No. (914) 677-8011		District
Laura Zaines representing the Dutchess County such irrigation practices being done within a thi		
COPIES TO:	BY: S. Petris	ko

WEHRAN ENGINEERING

CONSULTING ENGINEERS

EPA FORMS 2070-12 AND 2070-13

POTENTIAL HAZARDOUS WASTE SITE

L IDENTIFICATION

IL SITE NAME AND LOCATION O1 SITE NAME (LASAL COMMAN, OF GRECOPIC LOCATION) O2 STREET, ROUTE NO., OR SPECIFIC LOC	
NYSDOT Spill No. 811902 Route 22	ATION IDENTIFIER
Pawling O4 STATE O5 ZP CODE O8 COUNTY Pawling NY 12564 Dutches	SS 07COUNTY 08 CON COOK CLET
69 COORDINATES LATITUDE LONGITUDE	· · · · · · · · · · · · · · · · · · ·
Take Route 22 north Brady Brook, south of Akindale Road to Corrol Ford	(off Route 22)
III. RESPONSIBLE PARTIES	
O1 OWNER (Finance)	
Cole Petroleum Route 22	
	THOME MIAMBER
OF OPERATOR (Faceum and advanta form owner)	,
09 CTY 10 STATE 11 2P CCOS 12 TELEP	HONE NUMBER
13 TYPE OF GWNERSHIP (Check cont) B. A. PRIVATE B. FEDERAL: [Agency name]. C. STATE CD.CO. G. UNIONCWIN 14 GWNER/OPERATOR NOTIFICATION ON FILE (Check of the suppl) C. A. RCRA 3001 DATE RECEIVED: B. UNICONTROLLED WASTE SITE (CERCLA 16516) DATE RE	
A. RCRA 3001 DATE RECEIVED: HONTH DAY YEAR B. UNCONTROLLED WASTE SITE (CERCLA 16016) DATE RE	CEMPO / / LIC.NUME
IV. CHARACTERIZATION OF POTENTIAL HAZARD	CEIVED: G. NONE
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI ON SITE INSPECTION BY (Once of participation)	
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI ON SITE INSPECTION BY (CHARACTERIZATION OF POTENTIAL HAZARD BY (CHARACTERIZATION OF POTENTIAL HAZARD BY (CHARACTERIZATION OF POTENTIAL HAZARD BY (CHARACTERIZATION OF POTENTIAL HAZARD) BY (CH	MONTH DAY YEAR U.S. NONE
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI ON SITE INSPECTION 1 0 00 FLASTIAN GIR STRACTOR GIR GIR STRACTOR GIR STRACTOR GIR STRACTOR GIR STRACTOR GIR STRACTO	Z☐ B. OTHER CONTRACTOR
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI ON SITE INSPECTION IX YES DATE 1, 8, 86	Z☐ B. OTHER CONTRACTOR
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI ON SITE INSPECTION IX YES DATE 1,8,86 II A. EPA II B. EPA CONTRACTOR IV OF OTHER CONTRACTOR NAME(S): We hran Engineering G2 SITE STATUS (CRESSION) G3 YEARS OF OPERATION G4 DESCRIPTION OF SUBSTANCES POSSIBLY PRESENT. KNOWN, OR ALLEGED	ZO D. OTHER CONTRACTOR
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI ON SITE INSPECTION IX YES DATE 1,8,86 ID A. EPA ID B. EPA CONTRACTOR IX OF OTHER CONTRACTOR NAME(S): We have Engineering G2 SITE STATUS (CRESS SIN) G3 YEARS OF OPERATION ENGINEER BROWNING YEAR G3 YEARS OF OPERATION ENGINEER BROWNING YEAR BROWNING YEAR ENGINE YEAR BROWNING YEAR ENGINE YEAR BROWNING YEAR ENGINE YEAR BROWNING YEAR BROWNING YEAR BROWNING YEAR BROWNING YEAR BROWNING YEAR BROWNING YEAR BROWNING YEAR BROWNING YEAR BROWNING YEAR	ZO D. OTHER CONTRACTOR
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI ON SITE INSPECTION ON YES DATE 1,8,86 O A EPA O B EPA CONTRACTOR CONTRACTOR NAME(S): We hran Engineering G2 SITE STATUS (CHARACTER) G3 YEARS OF OPERATION G4 DESCRIPTION OF SUBSTANCES POSSIBLY PRESENT. KNOWN, OR ALLEGED Gasoline Components; Benzene O-Xylene Toluene Ethyl benzene	ZO D. OTHER CONTRACTOR
GI CH SITE MSPECTION TYPES DATE 1,8,86 CONTRACTOR NAME(S): GE SITE STATUS (COMES ON) CA ACTIVE C B. MACTIVE C C. UNKNOWN GASoline Components; Benzene Toluene M-Xylene GS DESCRIPTION OF POTENTIAL MAZARD TO SENVRONMENT AND/OR POPULATION Chemicals present in water supply wells.	ZO D. OTHER CONTRACTOR
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI ON SITE MSPECTION IX YES DATE 1,8,86 IND SOME 1,8 IND SOME 1,8 IND SOME 1,8 IND SOME 1,8 IND SOME 1,8 IND S	ZO D. OTHER CONTRACTOR
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI ON SITE MSPECTION IX YES DATE 1,8,86 IND SOME 1,8 IND SOME 1,8 IND SOME 1,8 IND SOME 1,8 IND SOME 1,8 IND S	ZO D. OTHER CONTRACTOR
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI ON SITE MSPECTION IX YES DATE I , 8 , 86 I A EPA I L EPA CONTRACTOR Wehran Engineering CONTRACTOR NAME(S): W	Z D. OTHER CONTRACTOR G CANADA CONTRACTOR C CANADA CONTRACTOR C CANADA CONTRACTOR C CANADA CONTRACTOR C CANADA CONTRACTOR C C CANADA CONTRACTOR C C C C C C C C C C C C C C C C C C C
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI GN SITE PROPERTION IX YES DATE 1,8,86 IND SITE PROPERTION IX YES DATE 1,8,86 IND SITE STATUS (CHARACTER) CONTRACTOR NAME(S): Wehran Engineering GI A ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA CONTRACTOR NAME(S): Wehran Engineering GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA ACTIVE II B. INACTIVE II C. UNKNOWN GIA C. UNKNOWN GIA C. UNKNOWN GIA C. UNKNOWN GIA C. UNKNOWN GIA	Z D. OTHER CONTRACTOR Z UNKNOWN Z UNKNOWN
IV. CHARACTERIZATION OF POTENTIAL HAZARD GI ON SITE MSPECTION IX YES DATE 1,8,86	Z D. OTHER CONTRACTOR G CANADA CONTRACTOR C CANADA CONTRACTOR C CANADA CONTRACTOR C CANADA CONTRACTOR C CANADA CONTRACTOR C C CANADA CONTRACTOR C C C C C C C C C C C C C C C C C C C

_	
_	
	<u> </u>
~	

POTENTIAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT PART 2 - WASTE INFORMATION

L IDENTIFICATION
01 STATE 02 SITE NUMBER
NY 314060

			PAN: 4" WAS!!	E INFUNMATION		·	
IL WASTES	rates, quantities, an	ID CHARACTERI	STICS				
	TATES (Cooks of the sport)	02 WASTE QUANTI	TY AT SITE	03 WASTE CHARACT	ERISTICS (Chees of the o	2071	
	C E. SLURRY		respondent	IS A TOXIC	X & SOLU	BLE EI. HIGHLY '	VOLATLE TOUS
I A SOUD I S. POWDE	R. FINES OF LIQUID	TONS		C B. CORRO	SIVE I F. INFEC ICTIVE II G. FLAM	MARIE ! KREACTI	v e
2 cramod	: Eles	CUBIC YAROS .		C O. PERSIS			PATIBLE
3 D. OTHER				1		~ m. mg. ~	700-00
	(Seepty)	NO. OF DRUMS .		<u> </u>		·····	
III. WASTE T	YPE						
CATEGORY	SUBSTANCE N	AME	O1 GROSS AMOUNT	02 UNIT OF MEASURE	03 COMMENTS		, , , _ , , , , , , , , , , , , , , , ,
SUU	SLUDGE	-					
OLW	OILY WASTE		j				
SOL	SOLVENTS		•				•
PSD	PESTICIOES						
occ	OTHER ORGANIC C	HEMICALS			<u> </u>		
100	INORGANIC CHEMIC	:ALS		<u> </u>	ļ		
ACO	ACIDS						
BAS	BASES						
MES	HEAVY METALS		<u> </u>		<u> </u>		
IV. HAZARD	OUS SUBSTANCES (300)		or ease CAS Numbers)				1 00 445 45 455 OF
01 CATEGORY	OZ SUBSTANCE	MME	C3 CAS NUMBER	04 STORAGE/DIS	POSAL METHOD	05 CONCENTRATION	OB MEASURE OF CONCENTRATION
Sol	Benzene		71-43-2			91	ug/l
Sol	Toluene		108-88-3			2870	ug/l
Sol	Xylene		•			1610	ug/I
Sol	Ethyl benzen		100-41-4			ļ	ļ
Sol	Tetrachloroe	thylene					
				·			
						1	<u> </u>
				1			
			 				
			 			1.	
		····	-	-			
 				<u> </u>			
		· · · · · · · · · · · · · · · · · · ·					
			<u></u>	<u> </u>		1	
V. FEEDSTO	OCKS (the Asserted to CAS from	20-0)					
CATEGORY	01 FEEDSTO	CKNAME	GS CAS NUMBER	CATEGORY	Of PEEDS	FOCK MAME	OZ CAS KUMBER
FDS				FDS			
FDS				FOS	<u> </u>		
FDS				FDS			
FDS				FDS			
VL SOURCE	S OF INFORMATION (S	A CONTRACTOR OF STREET	, eiges lines, astrono energias,	/month)			
	10 ! 11	-de *47	Disposal Sita	Report			
NYSDE Galson	C inactive Hazai Technical Servic	rdous waste es; laborato	ry analysis re	port 12/17/8	3		

SEPA

POTENTIAL HAZARDOUS WASTE SITE

PRELIMINARY ASSESSMENT

L IDENTIFICATION
of STATE 02 STE NAMEER
NY 314060

	MAZARDOUS CORUITIONS ARD INCIDER	19	
IL HAZARDOUS CONDITIONS AND INCIDENTS 01 XI A. GROUNDWATER CONTAMINATION	02 CXOBSERVED (DATE: _6/24/83)	CI POTENTIAL	C ALLEGED
03 POPULATION POTENTIALLY AFFECTED:	. 04 NARRATIVE DESCRIPTION		
Observed groundwater contamination de	termined from laboratory analysis	s of samples of	otained
from monitoring wells installed on-site.			
			•
01 ET B. SURFACE WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED:	02 () OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	& POTENTIAL	C ALLEGED
Potential surface water contamination of 1,000 feet from site.	lue to gasoline spill, and nearest s	urface water a -	pproximately
01 C C. CONTAMINATION OF AIR	02 C OBSERVED (DATE:)	C POTENTIAL	☐ ALLEGED
03 POPULATION POTENTIALLY AFFECTED:	04 NARRATIVE DESCRIPTION		
		•	
01 XI D. PREJEOPLOSIVE CONDITIONS 03 POPULATION POTENTIALLY AFFECTED:	02 (I) CESERVED (DATE:) 04 NARRATIVE DESCRIPTION	& POTENTIAL	C ALLEGED
Potential fire/explosive conditions exist			
			•
01 및 EL DIRECT CONTACT	02 C OBSERVED (DATE:)	E POTENTIAL	. C ALLEGED
03 POPULATION POTENTIALLY AFFECTED:	04 NARRATIVE DESCRIPTION		•
Possible direct contact due to gasoline of	contaminated drinking wells.		
01 Z F. CONTAMINATION OF SOL	02 C OBSERVED (DATE:	M POTENTIAL	C ALLEGED
OS AREA POTENTIALLY APPECTED:	04 NAFRATIVE DESCRIPTION		
Potential soil contamination due to gaso	line spill, and observed groundwat	ter contaminat	cion.
01 G. CRINKING WATER CONTAMINATION GS POPULATION POTENTIALLY AFFECTED:	02 (XOBSERVED (DATE: _3/22/82)	C POTENTIAL	C ALLEGED
Private drinking water wells contaminat	04 NARRATIVE DESCRIPTION red with gasoline		
Tittato alimning water well contaminate	.ou with gubbinio		
·			
01 II H. WORKER EXPOSURE/INJURY	02 C OSSERVED (DATE:	© POTENTIAL	
03 WORKERS POTENTIALLY AFFECTED:	04 NARRATIVE DESCRIPTION	U MISHINE	C ALLEGED
,	•		
	·		
01 & I. POPULATION EXPOSURE/INJURY 03 POPULATION POTENTIALLY APPECTED:	02 CBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	C POTENTIAL	C ALLEGED
Possible population exposure/injury via		ne contaminate	ed
drinking wells.		· · · · · · · · · · · · · · · · · · ·	
	_		
	•	•	

SEPA

POTENTIAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT

L IDENTIFICATION

O1 STATE O2 SITE NUMBER

N. VI 314060

PART 3 - DESCRIPTION OF HA	ZANDOUS CONDITION	S AND INCIDENT	3	314060
DI C J. DAMAGE TO FLORA	02 COSSERVED (DATE:	1	□ POTENTIAL	O ALLEDS
4 NARRATIVE DESCRIPTION			u ruisiin.	C ALLEGE
Unknown				•
			•	
1 C K. DAMAGE TO FAUNA 4 NARRATIVE DESCRIPTION PROPERTY AND ADMINISTRA	02 () OBSERVED (DATE:)	@ POTENTAL	O ALLEGED
		`		
Unknown				,
I CI L CONTAMINATION OF FOOD CHAIN	02 C OSSERVED (DATE:		□ POTENTIAL	□ ALLEGED
NARRATIVE DESCRIPTION		······································		
Unknown				•
M. UNSTABLE CONTAINMENT OF WASTES	02 C OBSERVED (DATE:		CXPOTENTIAL	C ALLEGED
POPULATION POTENTIALLY AFFECTED.	04 NARRATIVE DESCRIPTI			
No method of containment of wastes has	been observed or	documented.		
CAN. DAMAGE TO OFFSITE PROPERTY	02 C CBSERVED (DATE: _		E POTENTIAL	□ ALLEGED
NARRATIVE DESCRIPTION	•			
Unknown			•	
•		•	•	
CTO. CONTAMINATION OF SEWERS, STORM GRAINS, WWTPS NARRATIVE DESCRIPTION	02 C OSSERVED (DATE: _)	E POTENTAL	C ALLEGED
Unknown			•	
☐ P. ILLEGAL/UNAUTHORIZED DUMPING	02 C OBSERVED (DATE:	<u> </u>	D POTENTIAL	O ALLEGED
NARRATIVE DESCRIPTION		,		U ALLEGED
		• ,		· ••
		ŕ		•
DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLEG	ED HAZAROS			
		•		
•				
OTAL POPULATION POTENTIALLY AFFECTED:		-		
		· · · · · · · · · · · · · · · · · · ·		•
		•		
			•	•
OURCES OF INFORMATION (CO SPENSE (SUPPLIES & S. ASSESSE), AS		·	***************************************	
				
NYSDEC Inactive Hazardous Waste Disp				
Hydrogeologic evaluations oil spill Villag	ge of Pawling Dute	chess County,	NY	

POTENTIAL HAZARDOUS WASTE SITE

L IDENTIFICATION

SEPA	PART 1 - SIT	SITE INSPECT E LOCATION AND			l N	Y 314060
IL SITE NAME AND LO						
O1 SITE NAME (Lagar commen		**	02 STREE	ET, ROUTE NO., OR S	PECIFIC LOCATION IDENTIFIE	A
•	ill No. 811902		1	loute 22		
O3 CTY			O4 STATE	05 20° CC08	OS COUNTY	07COUNTY 08 CONG
Pawling			NY	12564	Dutchess	
41° 32' 08". N	73° 135 08".W	B A PRIVATE F. OTHER			C. STATE D. COU	
IIL INSPECTION INFOR	RMATION 02 SITE STATUS	I 03 YEARS OF OPERA				
1,8,86	Ø ACTIVE	W restaur Great		•	· X UNIQUO	was
MONTH DAY YEAR	- C INACTIVE	BEG	INHANG YE	AFI ENDING YEA		,
04 AGENCY PERFORMING IN						
│□A.EPA □ 8.EPA │□E.STATE Ĕ.F.STAT	CONTRACTOR Wehrar	Ligineering			KUNICIPAL CONTRACTOR	property and
OS CHIEF INSPECTOR		(Hains of him)			(Sensity)	OB TELEPHONE NO.
David B. Tompk	cins	Environme	ental S	cientist	Wehran	(914) 343-0660
OP COMER INSPECTORS		10 1114		0.0	11 ORGANIZATION	12 TELEPHONE NO.
Stephen R. Peti	risko	Environme	ntal T	Pechnician	Wehran	(914) 343-0660
brephen It. 1 eti	isko	Zava omin		Cermician	· · · · · · · · · · · · · · · · · · ·	
	•					()
•						()
	·· ·· ···					()
						()
13 SITE REPRESENTATIVES	MTERVIEWED .	14 TITLE		1 SACORESS		16 TELEPHONE NO
Mr. Jay Maxwe	ll, Sr.	Resident		Rt. 22, Paw	ling, NY	()
Mr. Jay Maxwe	11, Jr.	Resident		Rt. 22, Paw	ling, NY	()
						()
	·					
	· · · · · · · · · · · · · · · · · · ·				•	()
						()
	· —; · · ·					
					•	
17 ACCESS GAINED BY	18 TIME OF INSPECTION	19 WEATHER COM				
PERMISSION WARRANT	1:00 p.m.	20°, Clear	r, Cold			
IV. INFORMATION AV	ailable from					
01 CONTACT		O2 OF (Against Groun				O3 TELEPHONE NO.
Dennis G. Fenn		Wehran Eng				(914)343-0660
	FOR SITE INSPECTION FORM	05 AGENCY	1	GANIZATION	07 TELEPHONE NO.	08 DATE
Stephen R. Pet	risko		Weh	ran	(914)343-0660	11 / 5 / 86

Ω.	

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 2. WASTE INFORMATION

1	L IDENT	TRICATION
	OI STATE	02 SITE NUMBER
1	MW	21/060

7	•			EINFORMATION			
IL WASTE ST	ATES, QUANTITIES, AN						
	ATES (Chase of their apply)	Q2 WASTE QUANTI	TY AT SITE	03 WASTE CHARACTT	EPISTICS (Chain of their as		
CLE SLUTTEY Meditor			TO A TOXOC	CYE SOLUE	RLE GLINGHLY \		
G B. POWDE	R, FINES ZI-F, LIQUID	· 10MS -		☐ G. RADICA	CTIVE (AG. PLAN	MARLE CI K. REACTE	VE
G C STROOT	D 4. GAS	CUBIC YARDS -	·	C D. PERSIS	TENT GHLICHTA	UGLE C L SICOMP	
D D. OTHER	(Speedy)	NO OF DRUMS -					
IIL WASTET	YPE						
CATEGORY	SLIESTANCE N	MMS	O1 GROSS AMOUNT	02 UNIT OF MEASURE	03 COMMENTS		
SLU	STRIDGE		·				
OLW	OILY WASTE			,			
SOL	SOLVENTS						التاليات المساور والمساور والمساور والمساور والمساور والمساور والمساور والمساور والمساور والمساور والمساور وا
PSD	PESTICIDES						
occ	OTHER ORGANIC C	HEMICALS					المراجعة الم
IOC	INORGANIC CHEMIC	:MS					
ACD	ACIOS						
BAS	BASES			·	·		
MES	HEAVY METALS						
IV. HAZARD	OUS SUBSTANCES (844) A	-	ty cost CAS Municipal			-	T AR MEASTIRE OF
01 CATEGORY	02 SUBSTANCE N	WE	OJ CAS NUMBER	04 STOPAGE/DIS	POSAL METHOD	05 CONCENTRATION	OB MEASURE OF CONCENTRATION
Sol	Benzene		71-43-2			91	ug/l
Sol	Toluene		108-88-3			2870	ug/l
Sol	Xylene					1610	ug/l
Sol	Ethyl benzene		100-41-4				<u> </u>
Sol	Tetrachloroet	hylene					
							
:							
							
							<u> </u>
				<u> </u>			
							
				<u> </u>	· · · · · · · · · · · · · · · · · · ·		
				<u> </u>			
V. FEEDST	OCKS (See Assessed to CAS Mar					•	
CATEGOR			02 GAS NUMBER	CATEGORY	01 PEEDST	TOCK NAME	02 CAS NUMBER
FDS				FOS			
FDS				FDS		_	
FDS			1	FOS			
FDS				FOS			
	S OF INFORMATION (C	to angulis references. A.	0. 1214 get value and a	. /eso/G)			
NYSDE	C Inactive Hazar	dous Waste	Disposal Repo	rt			
Galson	Technical Service	es; laborator	y analysis rep	OFT 12/17/86			
1							

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

L IDEN	TIFICATION
O1 STATE	314060

PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS IL HAZARDOUS CONDITIONS AND INCIDENTS 02 E OBSERVED (DATE: 0/24/83) 01 (X.A. GROLINDWATER CONTAMINATION C POTENTIAL 03 POPULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESI Observed groundwater contamination determined from laboratory analysis of samples obtained from monitoring wells installed on-site. 01 XI B. SURFACE WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: 02 COSSERVED (DATE: . E POTENTAL □ ALLEGED 04 NARRATIVE DESCRIPTION Potential surface water contamination due to gasoline spill. Nearest surface water approximately 1,000 feet from site. 01 C. CONTAMINATION OF AIR 02 C OBSERVED (DATE: . - POTENTIAL C ALLEGED 03 POPULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION 01 CCD. PREIEXPLOSIVE CONDITIONS 02 C OBSERVED (DATE: Z POTENTIAL C ALLEGED 03 POPULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION Potential fire/explosive conditions exist due to gasoline spill. 01 ZE DIRECT CONTACT 02 COSERVED (DATE: X POTENTIAL ☐ ALLEGED 03 POPULATION POTENTIALLY AFFECTED: **04 NARRATIVE DESCRIPTION** Possible direct contact due to gasoline contaminated drinking wells. 01 D.F. CONTAMINATION OF SCIL 02 COBSERVED (DATE: E POTENTIAL ALLEGED OS AREA POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION Potential soil contamination due to gasoline spill. 01 CKG. DRINKING WATER CONTAMINATION 02 & OBSERVED (DATE: 3/22/82) POTENTIAL ☐ ALLEGED 03 POPULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION Private drinking water wells contaminated with gasoline 01 C H. WORKER EXPOSURE/INJURY 02 C OBSERVED (DATE: D POTENTIAL ☐ ALLEGED 03 WORKERS POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION 01 & I. POPULATION EXPOSURE/INJURY 03 POPULATION POTENTIALLY AFFECTED: 02 C OBSERVED (DATE: . M POTENTIAL ☐ ALLEGED

04 NARRATIVE DESCRIPTION

Possible population exposure/injury via direct contact route due to gasoline contaminated drinking wells.

€FPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

L IDENTIFICATION
O1 STATE C2 STE NUMBER
NY 314060

PART 3 - DESCRIPTION OF HA	ZARDOUS CONDITIONS AND INCIDENT	s —	714000
IL HAZARDOUS CONDITIONS AND INCIDENTS (COMMAND			
01 🗆 J. DAMAGE TO FLORA 04 NARRATIVE DESCRIPTION	02 C OBSERVED (DATE:)	O POTENTIAL	☐ ALLEGED
Unknown			
		•	
01 C K. DAMAGE TO FAUNA 04 NARRATIVE DESCRIPTION GRADING COMMISSION	02 C CREETVED (DATE:)	CI POTENTIAL	C ALLEGED
Unknown			
01 🗆 L CONTAMINATION OF FOOD CHAIN 04 NARRATIVE DESCRIPTION	02 C OBSERVED (DATE:)	- POTENTIAL	C ALLEGED
Unknown	. •		
01 TAL UNSTABLE CONTAINMENT OF WASTES	02 (1 C8SERVED (DATE:)	(X POTENTIAL	C ALLEGED
03 POPULATION POTENTIALLY APPECTED:	04 NAPRATIVE DESCRIPTION	5 ,0,0,,,	
No method of containment of wastes has	been observed or documented.		
01 C N. DAMAGE TO OFFSITE PROPERTY 04 NARRATIVE DESCRIPTION	02 C OBSERVED (DATE:)	@ POTENTIAL	□ ALLEGED
Unknown	-0010		
01 🗆 O. CONTAMINATION OF SEWERS, STORM DRAINS, WWTPs 04 NARRATIVE DESCRIPTION	02 C OSSERVED (DATE:)	C POTENTIAL	C ALLEGED
Unknown			
01 C P. ILLEGAL/UNAUTHORIZED DUMPING 04 NARRATIVE DESCRIPTION	02 COSSERVED (DATE:)	C POTENTIAL	C ALEGED
05 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLE	· ·		
	•		
IIL TOTAL POPULATION POTENTIALLY AFFECTED:		•	
IV. COMMENTS			
` 			
V, SOURCES OF INFORMATION (Can appeals) references. A. g., arms (Res.	Account control Markets		
T. SUURGES OF INFORMATION CO. SOCIO COCCOCA & C. 1000 CO.			
NYSDEC Inactive Hazardous Waste Disp Hydrogeologic Evaluations Oil Spill Villag		NY	

	POTENTI	AL HAZARDOU	S WASTE SITE	L IDENTIFICATION 01 STATE 02 SITE NUMBER
⊗EPA		SITE INSPECTION PART 4 - PERMIT AND DESCRIPTIVE INFORMATION		
PERMIT INFORMATION				
TYPE OF PERMIT ISSUED	02 PERMIT NUMBER	03 DATE ISSUED	04 EXPIRATION DATE 05 COMME	ENTS
□ A. NPOES		l l		, ·
☐ B. UIC				
C. AIR				
CD. ROMA				
🗆 E. RCRA INTERIM STATUS				
☐ F. SPCC PLAN				,
G. STATE/Speatf				
H. LOCAL				
I. OTHER (Seally)				
□ 1. NONE				
SITE DESCRIPTION				
STORAGE/DISPOSAL (Green of the apply)	02 AMOUNT 03 UNIT	OF MEASURE 04 TI	EATMENT (Chest of the sector)	06 OTHER
A. SURFACE IMPOUNDMENT	63		INCENERATION	M A. BUILDINGS ON SI
B. PLES			UNDERGROUND INJECTION	M A SULDANS CAS
C. DRUMS, ABOVE GROUND D. TANK, ABOVE GROUND		C C. CHEMICAL/PHYSICAL		·
E E TANK BELOW GROUND			BIOLOGICAL WASTE OIL PROCESSING	OS AREA OF SITE
☐ F. LANDFILL			SOLVENT RECOVERY	
C G. LANDFARM			OTHER RECYCLING/RECOVERN	20
☐ H. OPEN DUMP		I =	OTHER	
C LOTHER		1	(Speedy)	
COMMENTS				
Gasoline contaminate Pawling, NY	ed drinking wells loo	cated in a com	nmercial area along R	oute 22 in

C. NADEQUATE, POOR

S D. INSECURE, UNSCUND, DANGEROUS

02 DESCRIPTION OF DRUMS, DIKING, LINERS, SARRIERS, ETC.

C A ADEQUATE, SECURE

No method of containment of wastes has been observed or documented.

C B. MODERATE

V. ACCESSIBILITY

O1 WASTE EASILY ACCESSIBLE: XYES (NO. 02 COMMENTS

Private drinking water wells contaminated with gasoline.

VL SOURCES OF INFORMATION (CO) accords referenced, e.g. state filtre, agreed analysis. Reports

NYSDEC Inactive Hazardous Waste Disposal Site Report Hydrogeoligic Evaluations, Oil Spill, Village of Pawling by Empire Soils Investigations, Inc. and Thomsen Associates

. €,FPA	POTENTIAL HAZARDOUS WASTE SITE LIDENTIFICATION			LIDENTIFICATION		
VETA	DART R. WATER		TION REPORT IC, AND ENVIROR	MENTAL DATA	NY 314060	
IL DRINKING WATER SUPPLY						
OI TYPE OF CRIMINA SUPPLY		OZ STATUS			03 DISTANCE TO SITE	
(Charles approprie		1			www.ioue	
", SURF COMMUNITY A.E		ENDANGERS A. C	ED APPECTED B. C	MONTORED C. 🗆	On-site	
NON-COMMUNITY C.		aa	£.X3	F. CX	B(mi)	
HL GROUNDWATER						
OI GROUNGWATER USE IN VICINITY A				,		
ČÍA CNLY SOURCE FOR DRIVING	G C S. OFFICERG		C C. COMMERC	IAL MOUSTRIAL PARISAT	ion 💢 d. not used, unuseasle	
•	COMMERCIAL, IN	DUSTRIAL PRIGATIO			·	
	,					
	2,915				on-site	
02 POPULATION SERVED BY GROUNS	/ WATER			MEST DRUGGING WATER W		
04 DEPTH TO GROUNDWATER	OS DIRECTION OF GIR		OF CONCERN	OF AQUIFER		
10-19	Southwar	<u>d to Sou</u> thwe	st <u>ward</u>	m)	(god) 🗆 YES 🙀 NO	
00 DESCRIPTION OF WELLS (Inching)		إلى الأرادية أداي مطارقه يوم				
19 monitoring we	lls installed on-si	te. Depths ra	ange from 11 i	feet to 38 feet.		
3	٠.					
10 RECHARGE AREA		· · · · · · · · · · · · · · · · · · ·	11 DISCHARGE AREA			
TYES COMMENTS			C YES COMM	ens		
_ NO			O NO			
IV. SURFACE WATER						
01 SURFACE WATER USE (Chestrone)	<u>-</u>		•		• *	
E A. RESERVOIR, RECREATIO		N. ECONOMICALLY	C. COMME	ICIAL, INDUSTRIAL	C D. NOT CURRENTLY USED	
DRINKING WATER SQUAR	ZE IMPORTAN	IT RESOURCES				
02 AFFECTED/POTENTIALLY AFFECT	ED SCOIES OF WATER		<u>i</u>			
NAME:			¢.	AFFECTED	DISTANCE TO SITE	
Brady Brook				•	1,000 ft.	
					(mi)	
					(mi)	
V. DEMOGRAPHIC AND PROPERTY INFORMATION						
21 TOTAL POPULATION WITHIN	ENTY INFORMATION		 	02 DISTANCE TO NEARES	T PORE ATOM	
	740 10 LH 50 05 077	7.000				
ONE (1) MILE OF SITE A 403	1,596	1. met (1	915		1/4	
NO. OF PERSONS	NO. OF PERSONS		0. OF FERSON			
23 NUMBER OF BUILDINGS WITHIN TW			94 DISTANCE TO NEA	REST OFF-SITE BUILDING	•	
	27			1/8	(mi)	
25 POPULATION WITHIN VICINITY OF S	TTE (Provide rample) assurption of		-	TO COMPANY PROPERTY AND COM	y	

The area is predominantly commercial with few homes scattered throughout the area. There are private homes within 1,000 feet of the site.

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

LIDENT	IFICATION
01 STATE	OZ SITE NUMBER 314060
INV	314060

PART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATA VL ENVIRONMENTAL INFORMATION OI PERMEABILITY OF UNSATURATED ZONE (C ☐ A. 10-4 -- 10-4 cm/sec □ 8. 10⁻⁴ - 10⁻⁴ cm/sec □ C. 10-4 - 10-3 cm/sec □ D. GREATER THAN 10-3 cm/sec 02 PERMEABILITY OF BEDROCK (Cheek arm) A IMPERMEABLE ☐ 8. RÉLATIVELY IMPERMEABLE ☐ C. RELATIVELY PERMEABLE ☐ D. VERY PERMEABLE (10⁻⁴ - 10⁻⁴ correct) (Press' per 10⁻² correct) 03 DEPTH TO BEDROCK 04 DEPTH OF CONTAMINATED SOIL ZONE 15 - 30Unknown Unknown 06 NET PRECIPITATION 07 ONE YEAR 24 HOUR RAINFALL OS SLOPE SITE SLOPE DIRECTION OF SITE SLOPE up to 10 16 Southwest ندا) 09 FLOCO POTENTIAL 10 \square SITE IS ON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOODWAY SITE IS IN. YEAR FLOODFLAIN 11 DISTANCE TO WETLANDS (14 12 DISTANCE TO CRITICAL HABITAT (of assessment as OTHER N/A > 1 **ENDANGERED SPECIES:** 15 LAND USE IN VICINIT DISTANCE TO: RESIDENTIAL AREAS: NATIONAL/STATE PARKS, FORESTS, OR WILDLIFE RESERVES AGRICULTURAL LANDS **COMMERCIAL/INDUSTRIAL** PRIME AG LAND on-site

14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPH

The site is situated in the valley of the East Branch of the Croton River. Elevations on the valley floor in the area range from approximately 430 to 450 feet above mean sea level. Uplands marginal to the valley form scarps rising rapidly to elevations of 850 feet or more above mean sea level.

VII. SOURCES OF INFORMATION (City assents references, e.g., 1980 Hos. as

Hydrogeologic Evaluations by Empire Soils Investigations, Inc. and Thomsen Associates.

VERA	3	EF	A
------	---	----	---

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 6-SAMPLE AND FIELD INFORMATION

LIDENT	PICATION
OT STATE	02 SITE NUMBER
NY	314060

IL SAMPLES TAKEN	II SAMDI SE TAKEM						
SAMPLETYPE	OT NUMBER OF SAMPLES TAKEN	G2 SAMPLES SENT TO	OS ESTIMATED DATE				
GROUNDWATER	N.A.	Camo Laboratories; Galson Technical	available				
SURFACE WATER			•				
WASTE							
AIR							
RUNOFF							
SPLL.							
SOL							
VEGETATION		·					
OTHER							
III. FIELD MEASUREM							
OI TYPE	CZ COMMENTS						
·							
_							
•			·				
IV. PHOTOGRAPHS A	ND MAPS						
OI TYPE CYGROUND		Wehran Engineering					
G MAPS 04	Wehran E	ngineering .					
V. OTHER FIELD DATA COLLECTED (************************************							
	,	•					
VI. SOURCES OF INF	ORMATION (Can appeals / servences) A.G., Jasep Glas, Jaseppo anafeca, records					

 $\ensuremath{\mathsf{Hydrogeologic}}$ Evaluations by Empire Soils Investigations, Inc. and Thomsen Associates.

&EPA	,	SITE INSP	ZARDOUS WASTE SITE ECTION REPORT NER INFORMATION	O1 STATE O	CATION 2 SITE NUMBER 314060
CURRENT OWNER(S)			PARENT COMPANY (# augicinity		
Maxwell Engine		02 D+6 NUMBER	OS NAME		RBBMUM 8+C 60
STREET ADDRESS (A.d. am. 1990, am.)		04 SIC CODE	TO STREET AGORESSIP O. dam, APOP, etc.)		11 SIC CODE
CATY	OS STATE	07 ZP CODE	12 City	STATE EI	14 ZIP CODE
Corral Ford	•	02 0+6 NUMBER	OS NAME		C9 O+6 NUMBER
STREET ADDRESS (P.Q. See, APO F, em.)		04 SIC COOE	10 STREET ACCRESS (P.O. Sun, AFO A, one.)	•	11 SIC CODE
aiv	OS STATE	07 ZP COOE	12 CITY	13 STATE	14 ZP CODE
Heinchon Dairy		02 D+8 MINNER	OS NAME	•	09 D+6 NUMBER
STREET ACCRESS (P.O. Sun, AFO 6, em.)		04-93C CG06	10 STREET ACCRESS (P.Q. Sec. APO F. sec.)	•	11SIC COOK
aiv	06 STATE	07 ZP CC08	12 GTY	13 STATE	14 ZIP CODE
Mario's Pizza	•	02 D+6 NUMBER	OS NAME		090+8 NUMBER
STREET ADDRESS (P.G. dos., APD P. onl.)		04 SIC COOE	10 STREET ACCRESS (P.O. Sec., AFO F. etc.,	,	1190 0006
CITY	GG STATE	07 ZIP CCOE	12 GTV	IJSTATE	14 ZIP CODE
PREVIOUS OWNER(S)			IV. REALTY OWNER(S) (7 AMERICAN	ist mest meen from	
NAME		Q2 D+6 MANGER	O1 NAME		Q2 0+6 NUMBER
STREET ACCRESS (P.O. See, AFO F. on.)		04 SIC CO06	G3 STREET ACCRESS (P. O. San, APD F. san.		04 SIC CODE
CITY .	. COSTATE	07 ZP CODE	os any	OS STATE	07 ZIP COOE
NAME .		02 0+8 MJMBER	OI NAME		02 0+6 NUMBER
STREET ACCINESS (P.Q. das, AFO 4, eas)		04 SIC CODE	03 STREET ADDRESS (P.O. Ann. APO F. etc.		04 SIC CODE
ary	OS STATE	07 ZIP COOE •	68 GTY	06 STATE	67 ZIP CODE
NAME	,	02 D+6 NJMBEA	91 NAME		02 0+8 NUMBER
STPEET ACOMESS (P.O. Sun. AFD A. cm.)		04 SIC CODE	Q3 STREET ACCRESS (P.Q. dos. AFO F. osc.)		04 SIC CODE
AIY .	STATE	07 ZP CCCE	OS CITY	06 STATE	07 ZIP CODE
			•		

O COA POT		TENTIAL HAZARDOUS WASTE SITE			LIDENTIFICATION	
SEPA				TION REPORT FOR INFORMATION	O1 STATE C	SITE NUMBER 314060
			PARI O-UPERA			
IL CURRENT OPERATO	OR (Preside d'allerent fre			OPERATOR'S PARENT COMPA	Tanpinani	
	•		02 0+6 NUMBER	10 NAME		11 0+8 NUMBER
03 STREET ADDRESS (P.Q. &	na, AFO é, esa j		04 SIC CODE	12 STREET ADDRESS (P.Q. des, APD 6, ess.)		13 SIC CC08
96 CTY		06 STATE	97 2≯ CCC€	14017	15 STATE	18 ZP CCCE
08 YEARS OF OPERATION	CO NAME OF CHINER					·
IIL PREVIOUS OPERAT	OR(S)	nt primits an	y / Afficiant from passer)	PREVIOUS OPERATORS' PAREN	IT COMPANIES #	
OI NAME			04 D+8 NUMBER	10 NAME		11 D+6 NUMBER
33 STREET ADDRESS (P.O. M	m. A*04. em.)		04880000	12 STREET ADDRESS (P.Q. See, APD A, em.)		13 SIC COOE
36 GTY		OS STATE	07 ZP CCOE	14 GTY	15 STATE	16 ZIP CODE
38 YEARS OF OPERATION	09 NAME OF OWNER	CUPRING THE	PERIOD			
31 NAME			02 D+8 NUMBER	10 NAME		17 D+6 NUMBER
03 STREET ADDRESS (P.O. Box	. #04 mi		104 SIC CODE	12 STREET ACCRESS (P.Q. Sec. MPD 4, em.)		
						13 SIC CODE
35 CITY		OS STATE	07 ZIP COOE .	14 CITY	15 STATE	16 ZIP CODE
38 YEARS OF OPERATION	09 NAME OF CHINER	OLIFONIS TIME	PERIOD/	·		
II NAME		ľ	02 D+8 NUMBER	10 NAME		11 D+6 NUMBER
3 STREET ACCRESS (P.Q. Am	LAFO F. COL.)		04 8IC CODE	12 STREET AGORESS (P.O. Ams. APD F. cm.)		13 SIC CODE
SCITY		OS STATE	07 ZP CODE	14 GTY	15 STATE	16 ZIP CODE
18 YEARS OF OPERATION	09 NAME OF OWNER O	LIFTONG THES	PERIOD			
	,		•			
IV. SOURCES OF INFO	RMATION (CO-	Approx.	6. 400 gr. 4000 caber			
B			•			
_				•	•	
					•	·
		٠				
						İ
'A FORM 2070-13 (7-81)						

≎EPA		SITE INSP	ARDOUS WASTE SITE ECTION REPORT TRANSPORTER INFORMATION L IDENTIFICATION OF STATE OF SITE NUMBER OF SITE NUMBE		
IL ON-SITE GENERATOR					
O1 NAME		02 0+6 NUMBER		·	
OS STREET ACCRESS (P.O. See, AFD 4, 402.)		04 SIC CODE		•	
OS CITY	OS STATE	07 ZP CODE	-	•	
IIL OFF-SITE GENERATOR(S)			.		
O1 NAME		02 9+8 NUMBER	01 NAME	02 D+8 NUMBER	
03 STREET ADDRESS (P.O. Sec. NºO F. all.)		04 SIC CODE	03 STREET ADDRESS (P.O. Ann. AFO P. etc.)	04 800 0000	
05 CITY	06 STATE	07 ZP CODE	os any	06 STATE 07 ZIP COOE	
DT NAME		02 0+6 NUMBER	O1 NAME	CZ D+8 NUMBER	
DI STREET ACORESS (P. Q. Jan., APD J., etc.)		04 SIC CODE	G3 STREET ACCRESS (P.O. day, APO F. cm.)	04 SIC COOR	
os atv	06 STATE	07 ZIP COOE	05 CITY	06 STATE 07 ZIP CODE	
IV. TRANSPORTER(S)		·			
DI NAME		C2 D+8 NUMBER	O1 NAME	02 D+6 NUMBER	
D3 STREET ACCRESS (P.C. Sus, APD F. on.)	•	04 SIC COOR	CS STREET ADDRESS (P.O. Sec. APD P. em.)	04 80 0000	
DS GTY	06 STATE	07 ZIP CODE	os CITY	06 STATE O7 ZIP CODE	
DI NAME		02 D+6 NUMBER	O1 NAME	02 D+8 NUMBER	
DS STREET ACCRESS (P.C. Ass. APOV. ass.)	•	04 SIC CODE	03 STREET ACCRESS (P.Q. San. AFD F. sm.)	04 SIC COOR	
DS CITY	06 STATE	07 ZP COOE	08 CTTY	06 STATE 07 ZIP CODE	
v. sources of information (case					

•	5		E	Ŧ)	4
ī	P	\\$ 1	R	ES	PO	NS
_		01	ñ	Ā	W	v

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

L IDENTIFICATION
O1 STATE 02 SITE NUMBER

	!	PART 10 - PAST RESPONSE ACTIVITIES		NY 314060
1. PAST RESPONSE	ACTIVITIES			
01 A. WATER S	SUPPLY CLOSED	O2 DATE	03 AGENCY	
on description	Unknown			
O1 C B TEMPOR	VARY WATER SUPPLY PROVIDE	O Q2 DATE	OS AGENCY	
04 DESCRIPTION	•	•		
	Unknown			
01 G. PERMAN 04 DESCRIPTION	IENT WATER SUPPLY PROVIDE	O2 DATE	03 AGENCY	
	Unknown			
01 C D. SPILLED 04 DESCRIPTION	MATERIAL REMOVED	02 DATE	03 AGENCY	
U. UESCHIP ION	Unknown	·		
.01 🗆 E. CONTAM	INATED SOIL REMOVED	Q2 DATE	03 AGENCY	·
04 DESCRIPTION				
	Unknown			
01 G F. WASTE R	TEPACKAGED	OZ DATE	03 AGENCY	
1	Unknown			
01 G. WASTE C	XSPOSED ELSEWHERE	02 DATE	03 AGENCY	
OF DESCRIPTION	Unknown	·		
01 C H. ON SITE		OZ DATE	03 AGENCY	
04 DESCRIPTION		•		
D	Unknown			
01 (2 I. IN SITU C) 04 DESCRIPTION	HEMICAL TREATMENT	C2 DATE	03 AGENCY	
•	Unknown	,		
	IOLOGICAL TREATMENT	02 DATE	03 AGENCY	
04 DESCRIPTION	Unknown			
01 G K. N SITU P	HYSICAL TREATMENT	02 DATE	03 AGENCY	
04 DESCRIPTION				•
	Unknown			
01 🗆 L ENCAPSU 04 DESCRIPTION	ALATION	G2 DATE	03 AGENCY	
,	Unknown			
	NCY WASTE TREATMENT	02 DATE	03 AGENCY	
04 DESCRIPTION	Unknown			
01 🗆 N. CUTOFF		OZ DATE	03 AGENCY	
04 DESCRIPTION				
	Unknown			
. 01 ☐ O. EMERGE 04 DESCRIPTION	NCY DIKING/SURFACE WATER	DIVERSION 02 DATE	03 AGENCY	
h	Unknown			
01 P. CUTOFF	TRENCHES/SUMP	OS DATE	03 AGENCY	
04 DESCRIPTION	Unknown	•		·
	•			
01 (2 Q. SUBSURI 04 DESCRIPTION	FACE CUTOFF WALL	O2 DATE	03 AGENCY	
	Unknown .			

€EPA	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES		TIFICATION 02 SITE NUMBER 314060
PAST RESPONSE ACTIVITIES			
01 C R. BARRIER WALLS CONSTRUCTED 04 DESCRIPTION	OZ DATE	03 AGENCY	
Unknown	•		
01 S. CAPPING/COVERING 04 DESCRIPTION	02 DATE	03 AGENCY	
Unknown	·		
01 (1 T. BULK TANKAGE REPAIRED 04 DESCRIPTION	OS DATE	03 AGENCY	
Unknown			
01 C U. GROUT CURTAIN CONSTRUCTED	OZ DATE	03 AGENCY	
04 DESCRIPTION Unknown	·		
01 () V. BOTTOM SEALED 04 DESCRIPTION	OS DATE	OS AGENCY	
Unknown		•	
01 (2 W. GAS CONTROL 04 DESCRIPTION	OZ DATE	da versica	
Unknown			•
01 C X FIRE CONTROL	O2 DATE	03 AGENCY	
04 DESCRIPTION Unknown			
01 🗆 Y. LEACHATE TREATMENT	02 DATE	03 AGENCY	
04 DESCRIPTION Unknown	•		
01 [] Z. AREA EVACUATED 04'DESCRIPTION	OZ DATE	03 AGENCY	
Unknown	,		
01 1. ACCESS TO SITE RESTRICTED	02 DATE	03 AGENCY	
04 DESCRIPTION Unknown			
01 2. POPULATION RELOCATED	OZ DATE	03 AGENCY	
04 DESCRIPTION			-
Unknown			
01 (1 S. OTHER REMEDIAL ACTIVITIES 04 DESCRIPTION	O2 DATE	03 AGENCY	
Unknown			

IIL SOURCES OF INFORMATION (Cho assessed references, e.g., state day, assessed enterper, reserv

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

L IDENTIFICATION
01 STATE 02 SITE NAMEER
NY 314060

Ħ	83	450	BCS	MENT	INFORM	ATION

O1 PAST REGULATORY/ENFORCEMENT ACTION (2 YES (CXNO

02 DESCRIPTION OF FEDERAL STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

EPA FORM 2070-13 (7-81)

6.0 ASSESSMENT OF DATA ADEQUACY
AND RECOMMENDATIONS

ara d

6.0 ASSESSMENT OF DATA ADEQUACY AND RECOMMENDATIONS

6.1 GROUNDWATER ROUTE

With quantitative evidence available to confirm a direct release to groundwater, a complete Phase II investigation is not recommended at this time.

A preliminary score of $S_{gw} = 65.62$ was computed from information in the Federal and State files and the site inspection.

6.2 SURFACE WATER ROUTE

The preliminary surface water route score is 7.44. Brady Brook is located approximately within 1,000 feet of the site. No documentation of any release to this surface water has been obtained. In order to verify the threat of potential surface water contamination, a one-time sampling event is recommended to determine if migration of contaminants to the stream has occurred.

6.3 AIR ROUTE

No measurable readings of organic vapors were detected with the HNU Photoionizer during the site inspection. To score an air release, qualitative sampling is required along with details on the sampling protocol and the meteorological conditions during the sampling event.

6.4 FIRE AND EXPLOSION

To score the fire and explosion hazard mode either a state or local fire marshall must have certified that the facility presents a significant fire or explosion threat to the public or to a sensitive environment, or there must be a demonstrated threat based on field observations (e.g., combustible gas indicator readings). The available records give no indication that either one of these tasks has been done.

6.5 DIRECT CONTACT

The direct contact route score $(S_{\overline{DC}})$ for this site is 12.50. There are no incidents due to direct contact; however, migration of contamination off site is suspect and of concern.

6.6 RECOMMENDATIONS

Due to the existing data documenting a release to the groundwater route, a Phase II investigation is not warranted at the NYSDOT Spill No. 811902 site. Therefore, the site is recommended for consideration by the NYSDEC Bureau of Remedial Action for an appropriate remedial program.

APPENDIX

RECEIVED DUTCHESS GOUN

185 SEP 11 A11:44

September 9, 1985

Corral Ford Route 22 Pawling, NY 12564

Attn: Robert Carpenter

Re: Spill No. 811902, PIN SP 1633.701 Pawling, Dutchess County

Dear Mr. Carpenter:

Attached find the chemical analysis (Gasoline Components in Water) of one water sample taken before a previously installed charcoal filter at your location on August 13, 1985.

The analysis indicates that your well water is free of gasoline contamination at this time. For questions regarding the interpretation of this report, contact the Dutchess County Health Department for assistance.

Based on the laboratory results for the last several months, this office will cease any further active involvement in this portion of the project.

The charcoal filters are scheduled to be removed at the end of September, 1985. If you choose to maintain the filters yourself, contact Culligan Water Conditioning at (914) 454-4010 to make the necessary arrangements.

Should you have any questions concerning this matter, contact this office at (914) 431-5771.

Very truly yours,

James D. Bailey Regional Oil Spill Engineer

/ John Schaff

Assistant Oil Spill Engineer

JDB/JS/ls
Attachment

cc: M. Clarke, Oil Spill Bureau, Albany, 5/216

C. Manfredi, NYSDEC-Region 3, White Plains

COUNTY OF WESTCHESTER DEPARTMENT OF LABORATORIES AND RESEARCH VALHALLA, NEW YORK 10595

RESULTS OF ANALYSES - GA	SOLINE COMPONENTS (DOH 310-19)
Lab No. 3439	Bottle No.
Date Rec'd 8/14/85	Date Coll'd 8/13/25
•	
	Time:
Agency Coll'd for NYS DC	
Collected From: Name Corr	al Ford (First)
(Last)	(First)
Address Pauling A	V. Y
(St. Rd.) (Town Vi)	llage City) (Zip Code) (County)
Sampling Point	Identification of SourceSpill #8/1902
Gasoline Criteria according to	PINTER TON OF SOURCE SPICE A STITLE
Gasoline Criteria according to Transportation. Test Procedure Water (Purgeable Aromatics) (DC	TOT GREATING COMMON
1. The following compounds must	
Compounds	ug/L
Benzene	_3·2
Toluene	<1
Ethylbenzene	<u> </u>
m-xylene p-xylene	<u> </u>
o-xylene	. < 1
_	
 The xylene isomers must be a (within a factor of 2). 	pproximately the same concentration
 Presence of additional peaks following retention times (Beam and a present a presen	enzene = 1.0 minutael
Method R. T.'s (min.)	Actual R. T.'s (min.)
3.9	
4.25*	
4.5*	
4.7*	
5.1*	
5.6	
5.9	
Gasoline Criteria Met	•
Gasoline Criteria Not Met_	
Unknown Compound	present.
Reported By	Date Reported 8/20/85

answonmental Conservation

Road, Arbany, New York 12233-0001

Henry G. Williams Commissioner B. Bishop, Contract Unit, Rm. 619 TO: Regional Spill Engr., Region FROM: VOUCHER PAYMENT PACKAGE (NON-CONTRACT)
Vendor's Name ////// 71/// SUBJECT: SP / /. > > 7/ | SPILL NO. F / Narrative of Events Location of Spill: Practing, Delivery County Spiller: L.J. Pyrelin Material Spilled: 7.14-61.4 Amount Spilled: Linking 212 Amount Recovered: MYNL Project Status (Current, Future): Felling and instilled at a Sheep League stare) at the temp. The other glat objection businesse les been found, DEC to antifice Purpose of Expenditure (What, Why): penditures are for the winted of smoot teche august thru October. Attached are one original and three copies of the following documents for to 10/3/1660 work performed from 8/11/6(2 NYSDEC Certification for Payment (AC 1882) \$ 16 5.6 Voucher (AC92) Invoice CCCTF Standard Clauses (For Payment over \$2,500) (32-02-2)Solicitation Record as Required Written Quotations as required

TP/ts

Attachments

cc: T. Plesnarski, Spill Response Section, Rm. 326 (cover letter only)

STATE STANDARD VOUCHER OF NEW YORK Orig. Agency Cod 09,00 1773 Dept Anviro Conservation Liability Date (MM) ayment Date (MM) (DD) (YY) OSC Use Only 98101186 Additional Payee Amount 14-1464893 105.00 4 Payee Name (Limit to 30 spaces) 1099 Code ogliol 86 Culligan Dutchess-Putnam Statistic Type Statistic Payee Name (Limit to 30 spaces) Water Conditioning Inc. 6 Ref/Inv. No. (Limit to 20 spaces) Address (Limit to 30 spaces) 39 Friendly Lane 8 7 0 7 8 (MM) (DD) (YY) Address (Limit to 30 spaces) Ref/Inv. Date 04/25/86 (Limit to 2 spaces)→ State City (Limit to 20 spaces) 12503 Poughkeepsie LY Description of Material/Service Unit Price If items are too numerous to be incorporated into the block below, Quantity Amount Order No. use form AC 93 and carry total forward. and Date 2 Guy-Patterson- XXXXXX 105 bo August-Oct rental of 2 M oil tanks 035.00 RECEIVED St. 10 1995 8 1085 NYSDEC WHITE PLAINS 8 Payee Certification: 105 PO I certify that the above bill is just, true and correct; that no part thereof has been paid except as stated and that the balance is actually due and owing, and that taxes from which the State is exempt are excluded. Total Discount Accounts Receivable سندر ۱۸۱۸ کارک Payeo's Signature in Ink 2-4-06 Dutchess-Putnam Water Cond. 105.00 Name of Company Net STATE COMPTROLLER'S PRE-AUDIT FOR AGENCY USE ONLY Certified For Payment I certify that this yougher is correct and just, and payment is approved. Merchandee Received Net Amount Verified Dai Audited Authorized Signature e No. Special Approval (as required) Title Date Liquidation Expenditure PO/Contract F/S Dept. Cost Center ٧r Object Accum Orig Agency Line Amount

Check if Continuation form is attached.

55950

46

RECEIVED

RECEIVED DUTCHESS COUNTY HEAUTH STUPE

DEC 19 1986

'85 SEP 11 A11:44

BUREAU OF HAZARDOUS SITE CONTROL DIVISION OF SOL D AND HAZARDOUS WASTE

September 9, 1985

Marios Pizza Route 22 Pawling, NY 12554

> Re: Spill No. 811920, PIR SP 1633.701 Pawling, Dutchess County

Dear Sir:

Attached find the chemical analysis (Gasoline Components in Water) of one water sample taken before a previously installed charcoal filter at your location on August 13, 1985.

The analysis indicates that your well water is free of gasoline contamination at this time. For questions regarding the interpretation of this report, contact the Dutchess County Health Department for assistance.

Based on the laboratory results for the last several months, this office will cease any further active involvement in this portion of the project.

The charcoal filters are scheduled to be removed at the end of September, 1985. If you choose to maintain the filters yourself, contact Culligan Water Conditioning at (914) 454-4010 to make the necessary arrangements.

Should you have any questions concerning this matter, contact this office at (914) 431-5771.

Very truly yours,

James D. Bailey Regional Oil Spill Engineer

by:

John Schaff

Assistant Oil Spill Engineer .

JDB/JS/1s
Attachment

cc: M. Clarke, Oil Spill Bureau, Albany, 5/216

C. Manfredi, MYSDEC-Region 3, White Plains

E. Marx, Dutchess County Health Department

COUNTY OF WESTCHESTER DEPARTMENT OF LABORATORIES AND RESEARCH VALHALLA, NEW YORK 10595

VALHALLA, NEW YORK 10596					
RESULTS OF ANALYSES - GASOLINE COMPONENTS (DOH 310-19)					
Lab No. 3438	Bottle No.				
Date Rec'd 8/14/85	Date Coll'd 8/13/85				
Sace Rec a					
•	Time: 1-40'Pm				
Agency Coll'd for NYS DCT Coll	l'd By M, Wetzel				
Collected From: Name Marrio'S P122 (Last) (Fir					
Address Pawling, NY.	Dutch.				
(St. Rd.) // (Town Village City	(Zip Code) (County)				
Sampling PointIdentific	ration of Source Sp. U#3/1902				
Gasoline Criteria according to New York Transportation. Test Procedure for Gaso Water (Purgeable Aromatics) (DOH Procedu	State Department of 57/633'76'7				
1. The following compounds must be prese	ent:				
Compounds ug/L					
Benzene					
Toluene					
Ethylbenzene <					
m-xylene <					
p-xylene <					
o-xylene					
The xylene isomers must be approximat (within a factor of 2).	ely the same concentration				
 Presence of additional peaks in the office of the following retention times (Benzene = *Major peaks - must be present. 	thromatogram with the 1.0 minutes)				
Method R. T.'s (min.) Actual F	R. T.'s (min.)				
3.9					
4.25*					
4.5*					
4.7*	•				
5.1*					
5.6					
5.9					
Gasoline Criteria Met					
Gasoline Criteria Not Met					
Un known Compound fore	sent-				
	01.1:-				

RECEIVED OUTCHESS COUNT HEALTH COUNT

785 SEP 11 A11:44

September 9, 1985

Mr. and Mrs. Kent Johnson Heinchon Dairy Box 327 Pawling, NY 12564

Re: Spill No. 811920, PIN SP 1633.701 Fawling, Dutchess County

Dear Mr. and Mrs. Johnson:

Attached find the chemical analysis (Gasoline Components in Water) of one water sample taken before a previously installed charcoal filter at your location on August 13, 1985.

The analysis indicates that your well water is free of gasoline contamination at this time. For questions regarding the interpretation of this report, contact the Dutchess County Health Department for assistance.

Based on the laboratory results for the last several months, this office will cesse any further active involvement in this portion of the project.

Should you have any questions concerning this matter, contact this office at (914) 431-5771.

Very truly yours,

James D. Bailey
Regional Oil Spill Engineer .

by:

John Schaff

Assistant Oil Spill Engineer .

JDB/JS/ls

Attachment

cc: M. Clarke, Oil Spill Bureau—Albany, 5/216

C. Manfredi, NYSDEC-Region 3, White Plains

E. Marx. Dutchess County Health Department

COUNTY OF WESTCHESTER DEPARTMENT OF LABORATORIES AND RESEARCH VALHALLA, NEW YORK 10595

RESULTS OF ANALYSES - GASOLINE COMPONENTS (DOR 310-19)

2440	
Lab No. 3440	Bottle No.
Date Rec'd 8/14/85	Date Coll'd 8/13/85
•	Time:/-25 pm
Agency Coll'd for NYS DOT	
Collected From: Name <u>HEINCH</u> (Last)	ION Dairy
	· · · · · · · · · · · · · · · · · · ·
Address Pawling, NY. (St. Rd.) (Town Vill	Dutch.
(St. Rd.) / (Town Vil)	age City) (Zip Code) (County)
Sampling Point	dentification of Source Pine Spic 33.70
Gasoline Criteria according to M Transportation. Test Procedure Water (Purgeable Aromatics) (DOM	for Gasoline Components in
1. The following compounds must	be present:
Compounds	ug/L
Benzene	23
Toluene	~ (
Ethylbenzene	
m-xylene p-xylene	<u> </u>
o-xylene	
2. The xylene isomers must be ap (within a factor of 2).	proximately the same concentration
 Presence of additional peaks following retention times (Be *Major peaks - must be presented. 	nzene = 1.0 minutes)
Method R. T.'s (min.)	Actual R. T.'s (min.)
3.9	
4.25*	
4.5*	
4./- 5.1★	
5.6	
5.9	
Gasoline Criteria Met	
Gasoline Criteria Not Met_	
Unknown Compound	present-
Reported By 1/2	Date Reported 8/2/85

ut

	N42 001 8	your buc	/ 22	29	26	6	23	13
	#3140	60.	NOV	FE B	APRIL	JULY	JAN	AUG
			1983	1984	1984	1984	1985	1985
	M M 15	00		1100	830	440	<u> </u>	1/0
	MAXWELL	Benzene Tolvene	1500 2900	1600	870	130		160
		Xylene P	380	550	390	146		7
		m	710	1500	290	024		85.8
		0	380	510	170	015		1.
		Eth. Benzena	390	500	350	145	·	77
•		Gasoline	No	No	YES	NO		NSu.
		Benzenie		ļ				
	VEN21A	Tolvene						
		Yylene TTCE			2	5		1.1
·		Gasoline	No	No	NO	NO		No
		Benzere	110	93	092		023	74
	JOHNSON	Taluene	13	06	005		/	, 20
		Xylene P	2)		2		/	
		m	01				\	\ '
		- 0	05	,,	10			5.4
		Eth.Benzen Gasoline	No	N0	10 No	NO	No	NC
		Benzene	400	3	/		3.2	1:5
	CARPENTER	Tolvene	420	10			71	
		Kylene 1	083		$\langle \cdot \rangle$			1
		"	110					\ \ '
		0	053			A 15	3. 1.	N ₁₀
		Gasoline.	YES	No	NO	No	No	No
		Benzone	072	,		\$ 3 3 3 N		6,9
	MARIO PIZZA	Tolune	025			2	1	1
		Eglene P	04			3	\	\
•		0	.07			,		\
		TCE	031				,	14
		TTCE		39	33	09		14
		Gasoline	NO	No	NO	1/0	No	NO
		! !	•		1	•	- 1	
				•				

NEW YORK STATE REGISTRY FORM

HAZARDOUS WASTE DISPOSAL SITES REPORT NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

County: Dutchess	902 Town/Cit		gion:	
Street Address Route 22	1000/015	y	<u> </u>	
Status of Site Narrative:				
Commercial area along Route 22, no just north of town line of Patterson in	rth of Brady Brook an PUtnam County.	d south of	Akindale 1 ,	Road,
The following parcels, whose wells well and the second sec	Rebuilders	asoline pre	sent in we	:
		,		
				•
Type of Site: Open Dump Landfill Structure	Treatment Fond(s)		Number o Number o	f Ponds_ f Lagoons_
Estimated Size 20 Acres				.•
Hazardous Wastes Disposed? Cor	firmed 🛛 Sus	pected \Box	1	•
Type and Quantity of Hazardous Was	tes:			
		QUANTITY	(Pounds, gallo	drums, tor
TYPE			9	,
TYPE Benzene			 .	·
Benzene Toluene		-		
Benzene		-		
Benzene Toluene				

Name of Current Owner of Site: Unkn	own	
Address of Current Owner of Site: Unknown	own	
Time Period Site Was Used for Hazardous	Waste Disposal:	
, 1960's	To Current	, 19
Is site Active \(\sum_{\text{\text{T}}} \) Inactive \(\overline{\text{\text{R}}} \) (Site is inactive if hazardous wastes we was closed prior to August 25, 1979)	re disposed of at thi	s site and site
Types of Samples: Air	Soil 🗇	
Remedial Action: Proposed III Progress III Progress III Nature of Action:	der Design 💭 Completed 💯	
Status of Legal Action: Unknown	State 🖾	Federal 🗁
Permits Issued: Federal Loca Solid Waste	1 Government Mined Land We	SPDES tlands Other
Assessment of Environmental Problems:		
Gasoline in private wells and groundwater		
•		
•		
Assessment of Health Problems:		
Unknown		
	•	
	·	
Persons Completing this Form:		
Stephen R. Petrisko	Wehran Engineering	
New York State Department of Environments Conservation Date	.1 New York State De	partment of Health
- Vare		